MAT 762, Algebraic Topology, Fall 2013

Homework Assignment 1

Problem 1.

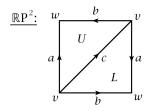
- (a) Show that $H_n(\mathbb{R}^m, \mathbb{R}^m \{0\})$ is in general not isomorphic to $\widetilde{H}_n(\mathbb{R}^m/(\mathbb{R}^m \{0\}))$.
- (b) Compute the reduced singular homology of the Sierpiński space, i.e., of the two-point space in which exactly one of the two points forms an open set.

Hint. In (a), describe the space $\mathbb{R}^m/(\mathbb{R}^m - \{0\})$ (for m > 0) explicitly and observe that it is independent of m. In (b), show that the Sierpiński space is contractible.

Problem 2. Compute the homology groups $H_n(\mathbb{R}P^m; \mathbb{Z}_2)$ by using the short exact sequence $0 \longrightarrow C_*(\mathbb{R}P^m; \mathbb{Z}_2) \xrightarrow{\tau} C_*(S^m; \mathbb{Z}_2) \xrightarrow{\pi} C_*(\mathbb{R}P^m; \mathbb{Z}_2) \longrightarrow 0$,

where τ is the map which sends a singular simplex to the formal sum of its two lifts in S^m , and π is the map induced by the projection $S^m \to \mathbb{R}P^m$. You may assume as known that $H_n(S^m; \mathbb{Z}_2)$ (for m > 0) is equal to \mathbb{Z}_2 if n = m or n = 0, and equal to zero otherwise.

Problem 3. A Δ -complex is a topological space X together with a collection \mathcal{C} of singular simplices $\sigma_{\alpha} \colon \Delta^n \to X$ such that X is the disjoint union of the $\sigma_{\alpha}(\operatorname{int}(\Delta^n))$, and such that a set $U \subset X$ is open iff $\sigma_{\alpha}^{-1}(U)$ is open in Δ^n for each α . One further requires that each σ_{α} is injective on $\operatorname{int}(\Delta^n)$, and that every (n-1)-simplex which can be obtained from an *n*-simplex of \mathcal{C} by composing with a face map ι_i^n is again an element of \mathcal{C} . For a Δ -complex X, one defines the simplicial homology as the homology of the subcomplex of $C_*(X)$ spanned by the simplices of \mathcal{C} . Compute the simplicial homology of the following Δ -complex:



Problem 4. Show that for an *R*-module *P*, the following are equivalent:

- (a) P is projective (i.e., has the lifting property).
- (b) Every short exact sequence $0 \to A \to B \to P \to 0$ splits.
- (c) There is an *R*-module K such that $P \oplus K$ is free.
- (d) The functor $h^P := \operatorname{Hom}_R(P, -)$ is exact.
- *Hint.* Prove (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (a).

This homework is due on Tuesday, September 17, 2013.