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Abstract

Khovanov homology ist a new link invariant, discovered by M. Kho-
vanov [Kh1], and used by J. Rasmussen [Ra] to give a combinatorial proof
of the Milnor conjecture. In this thesis, we give examples of mutant links
with different Khovanov homology. We prove that Khovanov’s chain com-
plex retracts to a subcomplex, whose generators are related to spanning trees
of the Tait graph, and we exploit this result to investigate the structure of
Khovanov homology for alternating knots. Further, we extend Rasmussen’s
invariant to links. Finally, we generalize Khovanov’s [Kh3] categorifications
of the colored Jones polynomial, and study conditions under which our cat-
egorifications are functorial with respect to colored framed link cobordisms.
In this context, we develop a theory of Carter–Saito movie moves for framed
link cobordisms.
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Introduction

In his seminal paper [Kh1], M. Khovanov introduced a new invariant for
oriented knots and links, which can be viewed as a “categorification” of the
Jones polynomial [Jo]. To a diagram D of an oriented link L ⊂ R3, Khovanov
assigned a bigraded chain complex Ci,j(D) whose differential is graded of
bidegree (1, 0), and whose homotopy type depends only on the isotopy class
of the oriented link L. The graded Euler characteristic

χq(C(D)) :=
∑

i,j

(−1)iqj dimQ(Ci,j(D) ⊗ Q) ∈ Z[q, q−1]

is a suitably normalized version of the Jones polynomial of L:

V (L)√t=−q =
χq(C(D))

q + q−1

The bigraded homology group Hi,j(D) of the chain complex Ci,j(D) provides
an invariant of oriented links, now known as Khovanov homology. Because
Khovanov’s construction is manifestly combinatorial, Khovanov homology is
algorithmically computable.

One of the remarkable properties of Khovanov homology is that it fits
into a topological quantum field theory of 2–knots in 4–space. Indeed, any
smooth link cobordism S ⊂ R3 × [0, 1] between two oriented links L0 × {0}
and L1 × {1} induces a chain transformation C(S) : C(D0) → C(D1), which
is a relative isotopy invariant of the cobordism S when considered up to sign
and homotopy. Moreover, C(S) is graded of bidegree (0, χ(S)), where χ(S)
denotes the Euler characteristic of the surface S.

In [L2], E. S. Lee modified Khovanov’s construction by adding additional
terms to the differential. On the basis of Lee’s results, J. Rasmussen [Ra]
defined a new knot invariant s(K) ∈ Z and used it to give a purely com-
binatorial proof of Milnor’s conjecture on the slice genus of torus knots.
Previously, this conjecture had been accessible only via Donaldson invari-
ants, Seiberg–Witten theory and knot Floer homology, and was considered
as a main application of these theories. In many ways, Khovanov homol-
ogy appears to be an algebro–combinatorial replacement for gauge theory
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and Heegaard Floer homology. An explicit relation between reduced Kho-
vanov homology with coefficients in Z/2Z and Heegaard Floer homology of
branched double–covers of the 3–sphere, in the form of a spectral sequence,
was discovered by P. Ozsváth and Z. Szabó [OS2].

In the past few years, several new link homology theories have emerged.
Among these are the Khovanov–Rozansky theories for the sl(n) polynomials
and the HOMFLY–PT polynomial [KR1, KR2], and two categorifications
of the colored Jones polynomial, proposed by Khovanov [Kh3]. Moreover,
D. Bar–Natan [B2] discovered a “formal Khovanov bracket”, which general-
izes both Khovanov homology and Lee homology, and which extends natu-
rally to tangles.

This thesis is devoted to the study of structural properties of Khovanov
homology, as well as to the generalization of Rasmussen’s invariant and its
applications, and contains contributions towards a 4–dimensional lift of Kho-
vanov’s theory for the colored Jones polynomial.

In Chapter 1 we review the definition of the formal Khovanov bracket
and discuss its relation with Khovanov homology and Lee homology.

Chapter 2 deals with Rasmussen’s invariant. We give a new proof of a the-
orem of E. S. Lee [L2], which states that the Lee homology of an n–component
link has dimension 2n. Then we extend Rasmussen’s knot invariant to links,
and give examples where this invariant is a stronger obstruction to sliceness
than the multivariable Levine–Tristram signature.

In Chapter 3, we study the behavior of Khovanov homology under Con-
way mutation. Conway mutation is a procedure for modifying links, which
was invented by J. Conway [Co]. We present infinitely many examples of
mutant links with different Khovanov homology. The existence of such ex-
amples is remarkable since many classical invariants, such as the HOMFLY–
PT polynomial, the knot signature and the hyperbolic volume of the knot
complement, are unable to detect Conway mutation. In particular, our ex-
amples show that Khovanov homology is strictly stronger than the Jones
polynomial.

In [B1], Bar–Natan computed the ranks of the Khovanov homology groups
for all prime knots with up to 11 crossings. One of his surprising experimen-
tal results is that the ranks of the Khovanov homology groups tend to be
much smaller than the ranks of the chain groups. In Chapter 4 we give an
explanation for this phenomenon: we prove that the complex Ci,j(D) retracts
to a subcomplex, whose generators are in 2 : 1 correspondence with the span-
ning trees of the Tait graph of D. Using this result, we give a new proof of
a theorem of Lee [L1], which states that the non–trivial homology groups
Hi,j(K) of an alternating knot K are concentrated on two straight lines in
the ij–plane. Our spanning tree model has applications to Legendrian knots
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(cf. [Wu]), and it is of theoretical interest because spanning trees also appear
in the context of knot Floer homology [OS1].

Chapter 5 is purely topological. We investigate link cobordisms equipped
with a framing, i.e. with a relative homotopy class of non–singular normal
vector fields. The most important part of Chapter 5 is the last section,
where we give a list of movie moves for movie presentations of framed link
cobordisms. Framed movie moves are needed if one wishes to establish func-
toriality of colored Khovanov invariants [Kh3] with respect to framed link
cobordisms.

In Chapter 6, we focus on Khovanov’s [Kh3] categorification of the non–
reduced colored Jones polynomial. By reformulating Khovanov’s construc-
tion in Bar–Natan’s setting, we obtain a “colored Khovanov bracket”. We
prove that the colored Khovanov bracket is well–defined over integer co-
efficients. Moreover, we introduce a family of modified colored Khovanov
brackets, and study conditions under which our modified theories are func-
torial with respect to colored framed link cobordisms. Lifting the colored
Jones polynomial to a functor can be seen as a first step into the direc-
tion of categorification of the sl(2) quantum invariant for 3–manifolds, and
might ultimately lead to an intrinsically 3– or 4–dimensional understanding
of Khovanov homology.

The material of Chapter 1 is taken from [B2], [B3], [Kh1], [Kh4], [L2]
and [We2]. Chapters 2, 5 and 6 contain the results of my joint paper with
A. Beliakova [BW], and Chapters 3 and 4 are taken from [We1] and [We2].
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1 Khovanov homology

In this chapter, we first recall basic concepts of knot theory. Then we give
the definitions of the Jones polynomial and the formal Khovanov bracket,
and discuss how Khovanov homology and Lee homology can be recovered
from the Khovanov bracket by applying a TQFT.

1.1 Links and link cobordisms

A link in R3 is a finite collection of disjoint circles which are smoothly em-
bedded into R3. These circles are called the components of the link. If an
orientation of the components is specified, we say that the link is oriented.
For an oriented link L, we denote by −L the same link but with reversed
orientations. A link consisting of only one component is called a knot.

Figure 1.1: An oriented link diagram.

To present links, one uses pictures such as the one in Figure 1.1, called link
diagrams. Given an oriented link diagram D, we denote by c+(D) and c−(D)
the numbers its positive (!) and negative (") crossings, and by w(D) :=
c+(D) − c−(D) the writhe of D. (E.g. in the above figure we have w(D) =
−c−(D) = −3 and c+(D) = 0).

It is known that two link diagrams represent isotopic links if and only
if they are related by a finite sequence of the following local modifications,
called Reidemeister moves.

Figure 1.2: The three Reidemeister moves R1, R2 and R3.

9



10 CHAPTER 1. KHOVANOV HOMOLOGY

To classify links up to isotopy, one usually uses link invariants, i.e. func-
tions whose domain is the set of links in R3 and whose value depends only
on the isotopy class of a link. One way of constructing a link invariant is by
defining it on the level of link diagrams and then showing that it is invariant
under Reidemeister moves.

A cobordism between two oriented links L0 and L1 is a compact oriented
surface smoothly embedded in R3 × [0, 1] whose boundary lies entirely in
R3 × {0, 1} and whose “bottom” boundary is −L0 × {0} and whose “top”
boundary is L1 × {1}. For technical reasons, we assume that the surface is
in general position with respect to the projection onto the last coordinate of
R3 × [0, 1], and parallel to [0, 1] near the boundary. It convenient to view the
last coordinate of R3 × [0, 1] as time coordinate.

Assume S ⊂ R3 × [0, 1] is a link cobordism. By cutting S along hyper-
planes R3 × {ti}, 0 = t0 < t1 < . . . < tn = 1, we can split S into elementary
pieces, such that each piece S ∩ R3 × [ti−1, ti] contains at most one critical
point with respect to the time coordinate, and such that all ti are regular
values. Projecting the oriented links Lti := S ∩ (R3 × {ti}) down to the
plane, we obtain a sequence of oriented link diagrams Dti . Altering the ti,
we can assume that any two consecutive diagrams differ by one of the fol-
lowing transformations: a planar isotopy, a Reidemeister move, or one of the
Morse moves shown in Figure 1.3. In this case, the sequence {Dti} is called
a movie presentation for S, and the individual diagrams Dti are called the
stills of the movie presentation.

Figure 1.3: Morse moves corresponding to cap, cup and saddle cobordism.

Theorem 1 ([CS]) 1. Every link cobordism has a movie presentation. 2. Two
movies represent isotopic link cobordisms if and only if they can be trans-
formed into each other by a finite sequence of Carter–Saito movie moves
(and by time–reordering different parts of a movie which “happen” at differ-
ent places).

The Carter–Saito movie moves are shown in Figures 1.4, 1.5 and 1.6. The
moves of Type I and II consist in replacing the circular movies of Figures 1.4
and 1.5 by identity movies, i.e. by movies where all stills look the same.
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MM1 MM2 MM3 MM4 MM5

Figure 1.4: Type I moves.

MM8

MM9

MM10

MM7

MM6

Figure 1.5: Type II moves.

MM11 MM12 MM13 MM15MM14

Figure 1.6: Type III moves.

As it will be needed in Chapter 5, we briefly recall the definition of the
linking number. Let L = K1 ∪ K2 be an oriented 2–component link with
corresponding diagram D = D1 ∪ D2. Let c′+(D) and c′−(D) denote the
numbers of positive and negative crossings at which D1 and D2 cross. Note
that c′+(D) and c′−(D) have the same parity, because D1 and D2 necessarily
cross in an even number of crossings.
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The linking number of K1 and K2 is defined by

lk(K1, K2) := (c′+(D) − c′−(D))/2 ∈ Z .

It is easy to see that lk(K1, K2) is invariant under Reidemeister moves and
hence determines an invariant of the link L. Geometrically, the linking num-
ber can be interpreted as the algebraic intersection number of two generic
compact oriented surfaces S1, S2 ⊂ R3 × (∞, 0] satisfying ∂Si = Ki × {0} ⊂
R3 × {0}.

1.2 The Kauffman bracket and the Jones polynomial

The Jones polynomial is an invariant for oriented links which was introduced
by V. Jones [Jo] in the year 1984. In [Ka2], L. Kauffman described an
elementary approach to the Jones polynomial using a state sum. In this
section, we recall Kauffman’s definition of the Jones polynomial. We use the
normalization conventions of [Kh1].

Let D be an unoriented link diagram. A Kauffman state of D is a diagram
obtained by replacing each crossing / of D with H or 1 (so that the result
is a disjoint union of circles embedded in the plane). We denote by K(D)
the set of all Kauffman states of D, and by n(D′) the number of circles in
D′ ∈ K(D). If D has c crossings, the number of Kauffman states is 2c. Given
a crossing of D (looking like this: /), we call H its 0–smoothing and 1 its 1–
smoothing. We denote by r(D,D′) the number of 1–smoothings in D′, where
here D′ can be a Kauffman state of D or more generally any link diagram
obtained from D by smoothing some of the crossings while leaving the others
unchanged.

The Kauffman bracket of D is the Laurent polynomial 〈D〉 ∈ Z[q, q−1]
defined by

〈D〉 :=
∑

D′∈K(D)

(−q)r(D,D′)(q + q−1)n(D′). (1.1)

For example, the Kauffman bracket of a crossingless diagram D = ©n con-
sisting of n disjoint circles is just 〈©n〉 = (q + q−1)n. Setting 〈D|D′〉 :=
(−q)r(D,D′), we can rewrite the above formula as

〈D〉 :=
∑

D′∈K(D)

〈D|D′〉〈D′〉 . (1.2)

It is easy to see that the Kauffman bracket satisfies the following rules:

〈∅〉 = 1, (1.3)

〈D ⊔©〉 = (q + q−1)〈D〉, (1.4)

〈/〉 = 〈H〉 − q〈1〉. (1.5)
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Rule (1.3) says that the empty link evaluates to 1. Rule (1.4) says that 〈D〉
is multiplied by (q+ q−1) when a disjoint circular component is added to D.
In the third rule, the three pictures /, H and 1 stand for three link diagrams
which are identical except in a small disk, where they look like /, H and 1,
respectively. The above rules determine the Kauffman bracket completely
(see Chapter 4).

Using (1.4) and (1.5) one can prove the following lemma which shows that
the Kauffman bracket is invariant under Reidemeister moves when considered
up to multiplication with a unit of the ring Z[q, q−1].

Lemma 1 The Kauffman bracket satisfies

1. 〈 〉 = q−1〈 〉 and 〈 〉 = −q2〈 〉.

2. 〈 〉 = −q〈 〉.

3. 〈 〉 = 〈 〉.

If D is the diagram of an oriented link L, we can define

J(D) := (−1)c−(D)qc+(D)−2c−(D)〈D〉. (1.6)

Lemma 1 implies that J(D) is invariant under Reidemeister moves and hence
an invariant of the link L. We denote this invariant by J(L) and call it the
Jones polynomial of L. The normalization of J(L) is chosen so that

J(∅) = 1 and J(©) = q + q−1. (1.7)

A triple (L+, L−, L0) of oriented links is called a skein triple if the oriented
links L+, L− and L0 possess diagrams which are mutually identical except
in a small disc, where they look like !, " and O, respectively. Using rule
(1.5), it is easy to see that the Jones polynomial satisfies

q−2J(L+) − q2J(L−) = (q−1 − q)J(L0) (1.8)

for any skein triple (L+, L−, L0). It is known that the Jones polynomial is
determined uniquely by relations (1.7) and (1.8) and the fact that it is a link
invariant.

Relation (1.8) implies that the value of the Jones polynomial depends only
on the skein equivalence class of a link, where skein equivalence is defined as
follows:

Definition 1 ([Kaw]) The skein equivalence is the minimal equivalence re-
lation “∼” on the set of oriented links satisfying L ∼ L′ whenever L and L′

are isotopic and such that
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1. L0 ∼ L′
0 and L− ∼ L′

− imply L+ ∼ L′
+,

2. L0 ∼ L′
0 and L+ ∼ L′

+ imply L− ∼ L′
−,

for any two skein triples (L+, L−, L0) and (L′
+, L

′
−, L

′
0).

The Laurent polynomials 〈D〉 and J(L) defined as above are related to
the original Kauffman bracket 〈D〉ori and Jones polynomial V (L) by

[

A−c〈D〉ori
]

A−2=−q
= 〈D〉 and V (L)√t=−q =

J(L)

q + q−1
,

where c denotes the number of crossings of D.

1.3 Bar–Natan’s formal Khovanov bracket

Khovanov homology was discovered by M. Khovanov [Kh1] in the year 1999.
In [B2], D. Bar–Natan proposed a generalization of Khovanov’s invariant,
which he called the formal Khovanov bracket.

In Subsections 1.3.1, 1.3.2, 1.3.3 and 1.3.4, we explain the target cate-
gory for the formal Khovanov bracket. Notice that the category Cob3•/l used
in this thesis is not the original category of [B2]. It is similar though to a
category introduced in [B2, Section 11], but more general and more directly
related to Khovanov’s universal rank 2 Frobenius system [Kh4]. In Subsec-
tions 1.3.5 and 1.3.6, we review the definition of the formal Khovanov bracket
and discuss how the formal Khovanov bracket extends to tangles.

1.3.1 Complexes in additive categories. Let C be an additive cate-
gory. A bounded (co)chain complex in C is a sequence of objects and mor-
phisms of C

K : . . . −→ Ki di

K−→ Ki+1 di+1

K−→ Ki+2 −→ . . .

with the property that di+1
K ◦di

K = 0 for all i ∈ Z andKi = 0 for all but finitely
many i ∈ Z. A chain transformation f : K → L between two complexes K
and L in C is a sequence of morphisms f i : Ki → Li such that di

K ◦ f i =
f i+1 ◦ di+1

L for all i ∈ Z. Two chain transformations f, g : K → L are called
homotopic if there exists a chain homotopy between them, i.e. a sequence of
morphisms hi : Ki → Li−1 such that di−1

L ◦ hi + hi+1 ◦ di
K = f i − gi. Let

Kom(C) denote the category whose objects are bounded complexes in C and
whose morphisms are chain transformations, and let Kom/h(C) denote the
quotient category Kom(C)/N where N is the ideal of chain transformations
homotopic to 0.
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Two complexes in C are said to be isomorphic (homotopic) if they are
isomorphic as objects of Kom(C) (Kom/h(C)). A complex which is homotopic
to the trivial complex is called contractible. Equivalently, a complex K is
contractible if its identity morphism IdK : K → K is homotopic to 0.

Given a complex K = (Ki, di
K), we refer to the index i as the homological

degree. For every n ∈ Z we denote by [n] the endofunctor of Kom(C) which
raises the homological degree by n, i.e. K[n]i+n = Ki and di+n

K[n] = di
K . (Note

that our convention is opposite to the convention used in [Kh1]).
Given a chain transformation f : K → L, the mapping cone of f is the

complex Γ(f) := K ⊕ L[1] with the differential

dΓ(f) :=

(

dK 0
f −dL[1]

)

i.e. dΓ(f)(x, y) = (dKx, fx− dL[1]y) for all (x, y) ∈ K ⊕L[1]. It is easy to see
that the mapping cone of an isomorphism is always contractible. Indeed, if
f is an isomorphism, we can define a homotopy between IdΓ(f) and 0 by

h =

(

0 f−1

0 0

)

.

Let K and L be two complexes in C. We say that K destabilizes to L,
or L stabilizes to K, if K is isomorphic to L ⊕ C for a complex C which is
isomorphic to the mapping cone of an isomorphism. Moreover, we say that
two complexes K and L are stably isomorphic if they become isomorphic
after stabilizing. The following lemma is taken from [We2, Lemma 2.1] (but
see also [B2, Lemma 4.5]).

Lemma 2 Let K, L be complexes such that K = K1 ⊕K2 and L = L1 ⊕L2

for contractible complexes K2 and L2. Then the mapping cone Γ(f) of a
chain transformation

K = K1 ⊕K2

f =

0

@

f11 f12

f21 f22

1

A

−−−−−−−−−−−−−−−→ L1 ⊕ L2 = L

is isomorphic to the complex Γ(f11) ⊕ K2 ⊕ L2[1]. In particular, if K2 and
L2 destabilize to the trivial complex, then Γ(f) destabilizes to Γ(f11).

Proof. On the level of objects (i.e. if one ignores the differentials), the
complexes Γ(f) and Γ(f11) ⊕ K2 ⊕ L2[1] are both isomorphic to K ⊕ L[1].
Thus, to prove the lemma, it suffices to construct an automorphism F :
K ⊕ L[1] → K ⊕ L[1] which intertwines the differentials. We define F by

F =

(

IdK 0
−N IdL

)
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where N : K1 ⊕K2 → L1[1] ⊕ L2[1] is given by

N =

(

0 f12hK

hLf21 hLf22

)

with hK and hL denoting the contracting homotopies of the complexes K2

and L2, respectively. A direct computation shows that F ◦ dΓ(f) = (dΓ(f11) +
dK2

+ dL2[1]) ◦F , so F is indeed an isomorphism between the complexes Γ(f)
and Γ(f11) ⊕K2 ⊕ L2[1]. �

If K = (Ki, di
K) is a complex in a category of modules over a ring, one

can define the i–th homology module of K by H i(K) := (ker di
K)/(im di−1

K ). It
is easy to see that homotopic complexes have isomorphic homology modules.

1.3.2 Dotted cobordisms. Let D0, D1 be two closed 1–manifolds em-
bedded in the plane R2. A cobordism from D0 to D1 is a compact orientable
surface S ⊂ R2 × [0, 1] whose boundary lies entirely in R2 ×{0, 1} and whose
“bottom” boundary is D0 × {0} and whose “top” boundary is D1 × {1}. A
dotted cobordism is a cobordism which is decorated by finitely many distinct
dots, lying in its interior. (These dots must not be confused with the signed
points which will be introduced in Chapter 5). Dotted cobordisms can be
composed by placing them atop of each other. We denote by Cob3• the cate-
gory whose objects are closed embedded 1–manifolds and whose morphisms
are dotted cobordisms, considered up to boundary–preserving isotopy.

We also define a quotient Cob3•/l of Cob3•, as follows. Cob3•/l has the same

objects as Cob3• but its morphisms are formal Z–linear combinations of mor-
phisms of Cob3•, considered modulo the following local relations:

(D) 1

(N)

(S) 0

Figure 1.7: (S), (D) and (N) relation.

Relation (S) means that any cobordism, which has a sphere without dots
among its connectivity components, is set to zero. Relation (D) means that
a sphere decorated by a single dot can be removed from a cobordism without
changing the class of the coborsism in Cob3•/l. Finally, (N) is the neck–cutting
relation. It can be used to reduce the genus of a cobordism, at the expense of
introducing some extra dots. Note that (S), (D) and (N) imply the following
relations:
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2

(4Tu)

(T)

Figure 1.8: (T) and (4Tu) relation.

If we impose the additional relation that a sphere decorated by exactly two
dots is zero ( = 0 ), then the (S) relation becomes a consequence of the

relations (D) and (N). Moreover, forming the connected sum with a torus
becomes equivalent to inserting a dot at the connected sum point and then
multiplying by 2 ∈ Z. Hence we essentially get back the theory of [B2,
Section 11], [B3].

Notations. We will use the following notations for the generating morphisms
of Cob3•/l. The symbol K stands for a saddle cobordism from H to 1. More

specifically, W stands for a saddle which splits a single component into two,
and� stands for a saddle which merges two components into one. # : ∅ → ©
and N : © → ∅ denote the cup and the cap cobordism, and V : © → ©
denotes the “multiplication” of © by a dot, i.e. the identity cobordism
©× [0, 1] decorated by a single dot.

1.3.3 Jones grading. In this subsection, we enhance the category Cob3•/l

by introducing a grading. We essentially follow [B2, Section 6].
Given a dotted cobordism S, we define its Jones degree by

deg(S) := χ(S) − 2δ(S)

where χ(S) denotes the Euler characteristic of S and δ(S) denotes the number
of dots on S. Since the (S), (D) and (N) relations are degree–homogeneous,
the Jones degree descends to Cob3•/l, turning morphism sets of Cob3•/l into
graded Z–modules.

We construct a graded category (Cob3•/l)
′. The objects of (Cob3•/l)

′ are

pairs (D, n), one for each object D ∈ Ob(Cob3•/l) and each integer n ∈ Z.

As ungraded Z–modules, the morphism sets of (Cob3•/l)
′ are the same as in

Cob3•/l, i.e.
Mor((D0, n0), (D1, n1)) := Mor(D0, D1) .

But the Jones degree of S ∈ Mor((D0, n0), (D1, n1)) is defined by

deg(S) := χ(S) − 2δ(S) + n1 − n0 .



18 CHAPTER 1. KHOVANOV HOMOLOGY

Note that deg(S) is additive under composition of morphisms.

For m ∈ Z, we denote by {m} the endofunctor of (Cob3•/l)
′ which “raises1

the grading” by m, i.e. (D, n){m} := (D, n+m). To simplify notations, we
will write D instead of (D, 0) (and consequently D{n} instead of (D, n)).

In what follows, we suppress the prime from (Cob3•/l)
′ and just call it

Cob3•/l. We denote by gCob3•/l the subcategory of Cob3•/l which has the same

objects as Cob3•/l, but whose morphisms are required to be graded of Jones
degree 0.

1.3.4 Additive closure and delooping. For every pre–additive cate-
gory C, there is an associated additive category Mat(C), called its addi-
tive closure. The objects of Mat(C) are finite sequences (Oi)

n
i=1 of objects

Oi ∈ Ob(C), which we write as formal direct sums
⊕n

i=1 Oi. The morphisms
F :

⊕

j Oj →
⊕

i O
′
i are matrices [Fi,j] of morphisms Fi,j : Oj → O′

i. Com-
position of morphisms is modeled on ordinary matrix multiplication:

[F ◦G]i,k :=
∑

j

Fi,j ◦Gj,k

The following lemma is Bar–Natan’s Lemma 4.1 [B3], with the only dif-
ference that we use a slightly more general definition for the category Cob3•/l.

Lemma 3 (Delooping) Let D′ be an object in gCob3•/l containing a circle ©,
and let D be the object obtained by removing this circle from D′. Then D′ is
isomorphic in Mat(gCob3•/l) to D{+1} ⊕D{−1}.

Proof. It suffices to show that the circle © is isomorphic to ∅{+1}⊕∅{−1}.
The isomorphisms are given by

0{+1}

0{−1}

Using relations (S), (D) and (N), it is easy to see that the above morphisms
are mutually inverse isomorphism. �

1Our convention is opposite to the convention in [Kh1].
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Let Kob := Kom(Mat(Cob3•/l)) denote the category of bounded complexes

in Mat(Cob3•/l), and Kob/h := Kom/h(Mat(Cob3•/l)) its homotopy category.

Likewise, let gKob := Kom(Mat(gCob3•/l)) and gKob/h := Kom/h(Mat(gCob3•/l)).

1.3.5 Definition of the Khovanov bracket. Let D be an unoriented
link diagram with c crossings. Recall that the Kauffman states of D are the
diagrams obtained by replacing every crossing of D by its 0–smoothing or
its 1–smoothing. After numbering the crossings of D, we can parametrize
the Kauffman states of D by c–letter strings of 0’s and 1’s, specifying the
smoothing chosen at each crossing. Let Ds denote the Kauffman state cor-
responding to the c–letter string s ∈ {0, 1}c, and let r(s) := r(D,Ds) and
n(s) := n(Ds) denote respectively the number of 1’s in s and the number
of circles in Ds. We can arrange the Kauffman states of D at the vertices
of a c–dimensional cube. In Figure 1.9, the cube is displayed in such a way
that two vertices which have the same number of 1’s (i.e. the same r(s)) lie
vertically above each other.

000

100

010

011

101

110

111

001

321

Figure 1.9: The cube of resolutions for the trefoil.

Two vertices s and t are connected by an edge (directed from s to t) if
they differ by a single letter which is a 0 in s and a 1 in t. For such s and t the
corresponding Kauffman states Ds and Dt differ at a single crossing / which
is a 0–smoothing in Ds and a 1–smoothing in Dt. To the edge connecting
s and t, we associate a cobordism St

s : Ds → Dt, defined as follows: in a
neighborhood of the crossing /, the cobordism St

s ⊂ R2 × [0, 1] is a saddle
cobordism K : H→ 1. Outside that neighborhood, it is vertical (parallel to
[0, 1]).
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Regarding the Kauffman states Ds and the cobordisms St
s as objects and

morphisms, we can view the above cube as a commutative diagram in the
category Cob3•/l. Indeed, for every square

Dt
Su

t

!!C
CC

CC
CC

C

Ds

St
s

=={{{{{{{{

St
′

s !!CC
CC

CC
CC

Du

Dt′

Su

t′

=={{{{{{{{

we have Su
t ◦ St

s = Su
t′ ◦ S

t′

s because distant saddles can be reordered by
isotopy. We can make all squares of the cube anticommute by multiplying
each morphism St

s by (−1)〈s,t〉, where 〈s, t〉 denotes the number of 1’s in s (or
in t) preceding the letter which is a 0 in s and a 1 in t. If we replace each Ds

by Ds{r(s)}, the Jones degree of St
s becomes deg(St

s) = χ(S) + r(t)− r(s) =
−1+(r(s)+1)−r(s) = 0, and hence St

s becomes a morphism in the category
gCob3•/l.

Now we “flatten” the cube by taking the direct sum of all objects and
morphisms which lie vertically above each other. The result is a chain com-
plex in the category Mat(gCob3•/l). The i–th “chain space” is given by

[[D]]i :=
⊕

s:r(s)=i

Ds{i} ∈ Ob(Mat(gCob3•/l)) (1.9)

The i–th differential di : [[D]]i → [[D]]i+1 is given as follows: for two vertices s
and t with r(s) = i and r(t) = i + 1, the matrix element (di)t,s is equal to
(−1)〈s,t〉St

s whenever s and t are connected by an edge, and zero otherwise.
Since squares of the cube anticommute, we get di+1 ◦ di = 0, whence

([[D]]i , di) is indeed a chain complex. We call this chain complex the formal
Khovanov bracket of D.

Note that the signs (−1)〈s,t〉 depend on the numbering of the crossings
of D. However, one can prove that different numberings lead to isomorphic
complexes.

Lemma 4 The formal Khovanov bracket satisfies:

1.
[[ ]]

destabilizes to
[[ ]]

{−1}. Likewise,
[[ ]]

destabilizes to
[[ ]]

[1]{2}.

2.
[[ ]]

destabilizes to
[[ ]]

[1]{1}.

3.
[[ ]]

is stably isomorphic to
[[ ]]

.
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In the lemma, [.] and {.} denote the shift of the homological degree and the
Jones degree, respectively. For a proof of the lemma, see [Kh1] or [B2].

If D is an oriented link diagram, we define

Kh(D) := [[D]] [−c−(D)]{c+(D) − 2c−(D)} ∈ Ob(gKob) (1.10)

Lemma 4 implies:

Theorem 2 The complex Kh(D) is a link invariant up to (graded) isomor-
phism and stabilization.

Remark. Assume /, H and 1 are three link diagrams which are identical
except in a small disk, where they look like /, H and 1, respectively. Then
the cube of the diagram / contains two codimension 1 subcubes, which
after flattening become the complexes

[[

H

]]

and
[[

1

]]

[1]{1}. The cobordisms
associated to the edges connecting the two subcubes can be assembled to a
chain transformation

[[

K

]]

:
[[

H

]]

→
[[

1

]]

{1}, such that
[[

/

]]

is canonically
isomorphic to the mapping cone of this chain transformation:

[[

/

]]

= Γ

(

[[

H

]] [[K]]
−→

[[

1

]]

{1}

)

(1.11)

(1.11) is an analogue of the relation 〈/〉 = 〈H〉 − q〈1〉 of Section 1.2.

1.3.6 Tangles. The formal Khovanov bracket can be extended to tangles,
i.e. to “parts of link diagrams” bounded within a circle.

Figure 1.10: A tangle.

Assume T is a tangle, whose boundary ∂T consists of finitely many points
lying on the dotted circle. Then the Khovanov bracket Kh(T ) is a chain
complex in the category Mat(gCob3•/l(∂T )), where gCob3•/l(∂T ) is defined in

analogy with gCob3•/l, with the difference that now the dotted cobordisms are
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confined within a cylinder and that they have a vertical boundary component
∂T × [0, 1]. The Jones degree of a dotted cobordism S : D0{n0} → D1{n1}
with vertical boundary ∂T × [0, 1] is defined by

deg(S) = χ(S) − 2δ(S) +
1

2
|∂T | + n1 − n0

where |∂T | denotes the number of points in ∂T .
The Khovanov bracket for tangles has good composition properties: sup-

pose T1 and T2 are two tangles, which can be glued side by side to form a
bigger tangle T1T2. Then there is a corresponding composition “♯” of for-
mal Khovanov brackets such that Kh(T1T2) = Kh(T1)♯Kh(T2) (see [B2] for
details).

1.4 Functoriality

Let Cob4 denote the category whose objects are oriented link diagrams, and
whose morphisms are movie presentations. Composition of movies is given
by “playing” one movie after the other, identifying the last still of the first
movie with the first still of the second.

We can extend the formal Khovanov bracket to a functor Kh : Cob4 →
Kob as follows. On objects, we define Kh as in (1.10). To define Kh on
morphisms, it suffices to assign chain transformations to Reidemeister moves,
and to cap, cup and saddle moves. For the Reidemeister moves, we take
the chain transformations implicit in the proof of Lemma 4. For the cap,
cup and saddle, we take the natural chain transformations induced by the
corresponding morphisms N, # and K in the category Cob3•/l.

Let Cob4/i denote the quotient of Cob4 by Carter–Saito moves, and Kob/±h

the projectivization of Kob/h (i.e. the category which has the same objects
as Kob/h, but where every morphism is identified with its negative).

Theorem 3 Kh descends to a functor Kh : Cob4/i → Kob/±h.

For proofs of Theorem 3, see [Ja], [Kh2] and [B2]. Jacobsson’s proof is based
on checking explicitly that the chain transformations associated to the two
sides of the Carter–Saito moves are homotopic up to sign. Bar–Natan’s proof
is more conceptual and remains valid in our slightly different setting.

A dotted link cobordism is a link cobordism decorated by finitely many
distinct dots. There is a notion of movie presentation for dotted link cobor-
disms, allowing us to define a category Cob4• whose objects are oriented link
diagrams and whose morphisms are movie presentations of dotted link cobor-
disms. We can extend the functor Kh : Cob4 → Kob to Cob4•, by viewing dots
on a link cobordism as dots in Cob3•/l.
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Let Cob4•/i denote the quotient of Cob4• by Carter–Saito moves and by
displacement of dots (i.e. by sliding a dot across a crossing). The following
lemma shows that Kh : Cob4• → Kob descends to a functor Kh : Cob4•/i →

Kob/±h if one imposes the additional relation = 0 on the category Cob3•/l.

Lemma 5 ([B4]) Assume = 0. Then the chain transformations Kh(P)

and Kh(Q) induced by “multiplying” by dot before and after a crossing / are
homotopic up to sign.

More precisely, one can show that Kh(P) is homotopic to −Kh(Q).

1.5 Homology theories

Let Cob denote the category whose objects are closed oriented 1–manifolds
and whose morphisms are abstract (i.e. non–embedded) oriented 2–cobordisms,
considered up to homeomorphism relative to their boundary. Cob is a tensor
category with tensor product given by disjoint union. A (1+1)–dimensional
topological quantum field theory (TQFT) is a monoidal functor

F : Cob −→ R- mod ,

where R- mod is the category of finite projective modules over a commutative
unital ring R.

Assume F is a (1+1)–dimensional TQFT which extends to dotted cobor-
disms, in a way compatible with the (S), (D) and (N) relations. Then F
induces a functor F : Cob3•/l → R- mod. Every such functor extends to a
functor

F : Kob −→ Kom(R- mod) .

Applying F to Kh(D) ∈ Ob(Kob), we obtain an ordinary chain complex
F Kh(D) in the category of R–modules. The isomorphism class of the ho-
mology of this complex is a link invariant, which is often more tractable than
the original Khovanov bracket.

Below, we will first recall the well–known correspondence between (1 +
1)–dimensional TQFTs and Frobenius systems, and then give examples of
TQFTs descending to Cob3•/l and discuss their associated link homology the-
ories.

1.5.1 Frobenius systems. Algebraically, (1+1)–dimensional TQFTs can
be described in terms of (commutative) Frobenius systems. A (commutative)
Frobenius system is a 4–tuple (R,A, ǫ,∆) where R, A, ǫ and ∆ are the fol-
lowing objects and morphisms. A is a commutative unital R–algebra, such
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that the natural R–module map ι : R → A given by ι(1) = 1 is injective.
ǫ : A→ R is a map of R–modules, and ∆ is a coassociative and cocommuta-
tive map ∆ : A → A⊗R A of A–bimodules such that (ǫ ⊗ Id) ◦ ∆ = Id (see
[Kh4]).

Given a commutative Frobenius system, we can define a (1+1)–dimensional
TQFT F by assigning R to the empty 1–manifold, A to the circle, A⊗RA to
the disjoint union of two circles etc. On generating morphisms of Cob (cup,
cap, splitting and merging saddle) we define F by F(#) := ι, F(N) := ǫ,
F(W) := ∆ and F(�) := m, where m is the multiplication of A.

For our purposes, we need a TQFT F : Cob → R- mod which extends to
dotted cobordisms, in a way compatible with the (S), (D) and (N) relations.
It is easy to see that for such a TQFT the corresponding Frobenius algebra
A has to be a free R–module of rank 2. Indeed, let 1 = ι(1) ∈ A denote
the unit of A, and let X ∈ A denote the image of 1 ∈ R under the map
F( ) : R → A, i.e. under the map induced by a cup cobordism decorated
by a single dot. A look at the delooping–isomorphism in the proof of Lemma 3
reveals that {1, X} is an R–basis of A.

1.5.2 The universal functor. The universal functor F∅ : Cob3•/l → R∅- mod
is defined as follows. On objects, F∅ is given by

F∅(D) := Mor(∅, D)

where Mor(∅, D) denotes the set of morphisms from ∅ to D in the category
Cob3•/l. Note that Mor(∅, D) is a graded Z–module. On morphisms, F∅
is defined by composition on the left. That is, if S ∈ Mor(D,D′) then
F∅(S) : Mor(∅, D) → Mor(∅, D′) maps S ′ ∈ Mor(∅, D) to S ◦S ′ ∈ Mor(∅, D′)
(compare [B2, Definition 9.1]).

Let us study the Frobenius system (R∅, A∅, ǫ∅,∆∅) associated to F∅. By
definition of F∅, the ring R∅ and the Frobenius algebra A∅ are given by

R∅ = Mor(∅, ∅), A∅ = Mor(∅,©)

where the multiplication maps of R∅ and A∅ are given by disjoint union and
by composition with the merging saddle (�), respectively. The R∅–module
structure on A∅ is induced by disjoint union. There are isomorphisms

R∅ ∼= Z[h, t], A∅ ∼= R∅[X]/(X2 − hX − t1) (1.12)

given as follows. Under the first isomorphism, h corresponds to (a sphere

decorated by two dots) and t corresponds to (a sphere deco-
rated by three dots minus the disjoint union of two spheres decorated by two
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dots). The second isomorphism in (1.12) sends a cup decorated by n dots to
Xn. In particular, the empty cup corresponds to 1.

The isomorphisms become graded if one defines

deg(h) := −2, deg(t) := −4, deg(1) := +1, deg(X) := −1 .

On tensor products A∅ ⊗R∅
. . .⊗R∅

A∅ the grading is given by deg(a1 ⊗ . . .⊗
an) := deg(a1) + . . .+ deg(an).

Khovanov [Kh4] observed that A∅ is the polynomial ring in X and Y :=
h − X, and R∅ is the ring of symmetric functions in X and Y , with h and
−t the elementary symmetric functions. With this interpretation, we can
describe the isomorphism R∅ ∼= Z[h, t] more explicitly, as follows. Let S ∈
R∅ = Mor(∅, ∅) be a closed cobordism. Using the (N) relation, we can reduce
the genus of S. Moreover, it is sufficient to consider the case where S is
connected. Hence we may assume that S is a sphere decorated by n dots. In
this case, S ∈ R∅ corresponds to

[n;X, Y ] :=
Xn − Y n

X − Y
∈ Z[h, t] .

To see this, compare the recursion relations

[0;X, Y ] = 0 ,

[1;X, Y ] = 1 ,

[n + 1;X, Y ] = h[n;X, Y ] + t[n− 1;X, Y ]

with the (S) and (D) relations and with the geometric relation corresponding
to X2 = hX + t1 (i.e. with the relation saying that two dots are the same
as h times one dot plus t times no dot).

The structural maps ǫ∅ : A∅ → R∅ and ∆ : A∅ → A∅ ⊗R∅
A∅ are given by

ǫ∅ :

{

1 7→ 0

X 7→ 1
∆∅ :

{

1 7→ 1 ⊗X +X ⊗ 1 − h1 ⊗ 1

X 7→ X ⊗X + t1 ⊗ 1
(1.13)

Khovanov [Kh4] proved that the Frobenius system (R∅, A∅, ǫ∅,∆∅) deter-
mined by (1.12) and (1.13) is universal among all rank two Frobenius system,
in the sense that every other rank two Frobenius system can be obtained from
this one by base change (i.e. extending coefficients of A by using a morphism
ψ : R → R′ of commutative unital rings to replace A by A′ := A⊗R R

′) and
twisting (replacing ǫ(x) by ǫ(yx) and ∆(x) by ∆(y−1x) for a fixed invertible
element y ∈ A).
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1.5.3 Khovanov’s functor. Khovanov’s [Kh1] functor FKh is obtained
from the universal functor F∅ by setting h and t to zero (or equivalently by
base change via ψ : R∅ = Z[h, t] → Z, ψ(h) = ψ(t) = 0). The resulting
Frobenius system is

RKh = Z, AKh = Z[X]/(X2)

Since the relations h = 0 and t = 0 are homogeneous, the grading on A∅
descends to AKh. The degrees of 1, X ∈ AKh are deg(1) = 1 and deg(X) =
−1. The structure maps are given by

ǫKh :

{

1 7→ 0

X 7→ 1
∆Kh :

{

1 7→ 1 ⊗X +X ⊗ 1

X 7→ X ⊗X

The geometric interpretation of h = 0 and t = 0 is as follows: h = 0
corresponds to = 0. The relation = 0 and the (N) relation imply
that addition of a handle is equivalent to insertion of a dot followed by
multiplication by 2 (see Subsection 1.3.2). Moreover, h = 0 implies Y 2 =
X2 = t1, and therefore

[2n;X, Y ]h=0 = tn[0;X, Y ]h=0 = 0

and

[2n+ 1;X, Y ]h=0 = tn[1;X, Y ]h=0 = tn .

Geometrically this means that a sphere decorated by an even number of dots
is set to zero, and a sphere decorated by 2n + 1 dots is identified with tn.
Combined with t = 0, this implies that any sphere containing more than
one dot is set to zero. More generally, every dotted cobordism containing a
closed component S with χ(S) − 2δ(S) < 0 is set to zero.

Let C(D) := FKh(Kh(D)) and C(D) := FKh([[D]]). The complexes C(D)
and C(D) are Khovanov’s original chain complexes (see [Kh1], where Kho-
vanov also introduced a more general theory, which is related to the theory
discussed here by twisting and base change). Let H(D) := H(C(D)) and
H(D) := H(C(D)) denote the homology groups of C(D) and C(D), respec-
tively.

Since AKh is graded, the chain groups Ci(D) are graded Z–modules, i.e.
Ci(D) =

⊕

j∈Z C
i,j(D), and since the differentials di

Kh : Ci(D) → Ci+1(D)
preserve the grading, there is an induced grading on homology. The isomor-
phism class of H(D) =

⊕

i,j∈Z H
i,j(D) is an oriented link invariant, known

as Khovanov homology.
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Given a graded Z–module M =
⊕

j∈ZM
j , Khovanov assigns a graded

dimension by

dimq(M) :=
∑

j

qj dimQ(M j ⊗Z Q) .

For example, dimq(AKh) = dimq(Z1 ⊕ ZX) = q + q−1.

Theorem 4 The graded Euler characteristic χq(C(D)) :=
∑

i(−1)i dimq(C
i(D))

is equal to the Jones polynomial J(D).

Proof. Applying FKh to (1.9), we get

C
i
(D) =

⊕

s:r(s)=i

FKh(Ds{i}) .

Since dimq(FKh(Ds{i})) = qi dimq(A
⊗n(s)
Kh ) = qi(q + q−1)n(s), this implies

χq(C(D)) =
∑

i

(−1)i
∑

s:r(s)=i

qi(q + q−1)n(s) = 〈D〉 .

Now the theorem follows because

χq(C(D)) = (−1)c−(D)qc+(D)−2c−(D)χq(C(D))

and because of the definition of the Jones polynomial. �

Alternatively, Theorem 4 can be proved by observing that χq(C(D)) satis-
fies the defining rules (1.3), (1.4) and (1.5) for the Kauffman bracket. Indeed,
χq(C(D)) satisfies

χq(C(∅)) = dimq(Z) = 1 ,

χq(C(D ⊔©)) = (q + q−1)χq(C(D)) ,

χq(C(/)) = χq(C(H)) − qχq(C(1)) .

The second equation follows from Lemma 3 (Subsection 1.3.4) and the third
equation is a consequence of the mapping cone formula (1.11).

1.5.4 Lee’s functor. Lee’s theory is obtained from the universal theory
by setting h = 0 and t = 1 and by changing coefficients to Q. Hence

RLee = Q, ALee = Q[X]/(X2 − 1) .

The structure maps ǫLee and ∆Lee are given by

ǫLee :

{

1 7→ 0

X 7→ 1
∆Lee :

{

1 7→ 1 ⊗X +X ⊗ 1

X 7→ X ⊗X + 1 ⊗ 1
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Note that the grading on A∅ does not descend to a grading on ALee because
the relation t = 1 is not homogeneous. However, ALee has the structure of a
filtered Frobenius algebra, with filtration given by

0 = F 3ALee ⊆ F 1ALee ⊆ F−1ALee = ALee

where F 1ALee = Q1 ⊂ ALee.
Lee’s chain complex is defined by C′(D) := FLee(Kh(D)). Since ALee is

filtered, the chain groups C′i(D) are filtered vector spaces, and the differen-
tials preserve the filtration. The filtration on C′(D) induces a filtration on
the homology groups H′i(D) := H i(C′(D)). Explicitly, if

0 ⊆ . . . ⊆ F j+2C′i(D) ⊆ F jC′i(D) ⊆ F j−2C′i(D) ⊆ . . . ⊆ C′i(D)

denotes the filtration on chain level, then F jH′i(D) ⊆ H′i(D) is defined as
the space of all homology classes which have a representative in F jC′i(D). For
a homology class x ∈ H′i(D), we write deg(x) = j if x has a representative
in F jC′i(D) but not in F j+2C ′i(D).

Following Lee [L2], we introduce a new basis {a, b} for ALee, defined by
a := X + 1 and b := X − 1. Written in this basis, the expressions for the
comultiplication and the multiplication become a little bit simpler:

∆Lee :

{

a 7→ a⊗ a

b 7→ b⊗ b
mLee :

{

a⊗ a 7→ 2a b⊗ b 7→ −2b

a⊗ b 7→ 0 b⊗ a 7→ 0
(1.14)

Note that the spaces FLee(Ds) = A
⊗n(s)
Lee ⊂ C′(D) are spanned by tensor

products of a’s and b’s. It is convenient to view such tensor products as
colorings of the circles ofDs by a or b. We call a Kauffman stateDs, equipped
with such a coloring, an enhanced Kauffman state2. Since the vector space
C′(D) is the direct sum C′(D) =

⊕

FLee(Ds), the enhanced Kauffman states
of D provide a basis for C′(D). Written in this basis, the differential of Lee’s
complex takes an easy form, which is essentially given by (1.14).

2The notion of enhanced Kauffman states was introduced by O. Viro [V] in a slightly
different context.



2 Rasmussen invariant for links

In this chapter, we give a new proof of a theorem due to E. S. Lee, which
states that the Lee homology of an n–component link has dimension 2n (see
[We2],[BM] for similar proofs). Then we define Rasmussen’s invariant for
links and give examples where this invariant is a stronger obstruction to
sliceness than the multivariable Levine–Tristram signature.

2.1 Canonical generators for Lee homology

Let L be a link with n components and let D be a diagram of L. According
to Subsection 1.5.4, the enhanced Kauffman states of D provide a basis for
C′(D). In [L2], Lee used this basis to construct a bijection between generators
of H′(D) and possible orientations of L.

This bijection can be described as follows. Given an orientation of L, we
smoothen all crossings of D in the way consistent with the orientation o. The
result is a Kauffman state Do whose circles are oriented. We can turn Do into
an enhanced Kauffman state, as follows. First, we color the regions between
the circles of Do alternately black and white, so that the unbounded region is
white, and such that any two adjacent regions are oppositely colored. Then
we color each oriented circle of Do with a or b depending on whether region
to its right is black or white. We denote the resulting enhanced Kauffman
state by so (cf. [Ra]).

Theorem 5 The homology classes [so] form a basis for Lee homology H′(L).
In particular, if L has n components, then there are 2n possible orientations
o, and hence the dimension of H′(L) equals 2n.

Proof. The proof is based on admissible edge–colorings of D. By an ad-
missible edge–coloring, we mean a coloring of the edges of D by the colors a
or b, such that every crossing of D admits a smoothing consistent with the
coloring. We say that an admissible edge–colorings is of Type I if at least one
of the crossings is one–colored (i.e. all four edges touching at the crossing
have the same color), and of Type II if all crossings are two–colored.

Given an admissible edge–coloring c, we denote by V (c) the subspace of
C′(D) generated by all enhanced Kauffman states whose circles are colored

29
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in agreement with c. Since Lee’s differential preserves the colors (see (1.14)),
V (c) is actually a subcomplex. Hence we have a decomposition

H′(D) =
⊕

c admissible

H(V (c))

where H(V (c)) denotes the homology of V (c). The spaces H(V (c)) can be
computed explicitly, as follows.

First, assume that c is of Type I. Select a one–colored crossing. Since
both smoothings of this crossing are consistent with c, the subcomplex V (c)
is isomorphic to the mapping cone of a chain transformation between the
two smoothings. A look at (1.14) shows that this chain transformation is an
isomorphism. Hence V (c) is contractible and consequently H(V (c)) = 0.

Now assume that c is of Type II. Then there is a unique enhanced Kauff-
man state sc consistent with c, and therefore H(V (c)) = V (c) = Qsc.

To complete the proof, one has to check that the sc arising from Type II
colorings are precisely the canonical generators so. The proof of this fact is
easy and therefore omitted. �

Remark. Note that the decomposition H′(D) =
⊕

H(V (c)) does not re-
spect the filtration of H′(D).

2.2 The generalized Rasmussen invariant

Let L be an oriented link with diagram D, and let [so] and [sō] the canonical
generators of the Lee homology corresponding to the orientation of L and to
the opposite orientation, respectively.

By Lemma 3.5 in [Ra], the filtered degrees of [so+sō] and [so−sō] differ by
two modulo 4. Further, we can show that they differ by exactly two. (Indeed,
multiplying by X ∈ ALee at any fixed edge of D induces an automorphism of
C′(D) of filtered degree −2, which interchanges [so + sō] and [so − sō]. The
Rasmussen invariant s(L) of the link L is given by

s(L) :=
deg([so + sō]) + deg([so − sō])

2
.

Note that s(L) = min(deg([so+sō]), deg([so−sō]))+1 and that the Rasmussen
invariant of the n–component unlink is 1 − n.

Let S be a link cobordism from L1 to L2 such that every connected com-
ponent of S has a boundary in L1. Then the Rasmussen estimate generalizes
to

|s(L2) − s(L1)| ≤ −χ(S) . (2.1)
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Indeed, arguing as in [Ra] we obtain the estimate s(L2) ≥ s(L1) + χ(S). By
reflecting S ⊂ R3 × [0, 1] along R3 × {1/2}, we obtain a cobordism from L2

to L1 with the same Euler characteristic as S. This gives us the estimate
s(L1) ≥ s(L2) + χ(S).

Lemma 6 Let L̄ be the mirror image of L and #, ⊔ denote the connected
sum and the disjoint union, respectively. Then

s(L1 ⊔ L2) = s(L1) + s(L2) − 1 (2.2)

s(L1) + s(L2) − 2 ≤ s(L1#L2) ≤ s(L1) + s(L2) (2.3)

−2|L| + 2 ≤ s(L) + s(L̄) ≤ 2 (2.4)

Here, |L| denotes the number of components of L. Note that the first in-
equality of (2.4) becomes an equality if L is an unlink. In the case where L1,
L2 and L are knots, the second inequality of (2.3) and the first inequality of
(2.4) are equalities (see [Ra]).

Proof of the lemma. Let o1, o2 and o denote the orientations of L1, L2 and
L1 ⊔ L2, respectively. The filtered modules C′(L1 ⊔ L2) and C′(L1) ⊗ C′(L2)
are isomorphic by an isomorphism which sends so to so1

⊗ so2
. Hence (2.2)

follows from deg([so]) = min(deg([so + sō]), deg([so − sō])) = s(L1 ⊔ L2) − 1
and deg([soi

]) = min(deg([soi
+ sōi

]), deg([soi
− sōi

])) = s(Li) − 1 (cf. [Ra,
Corollary 3.6]). (2.3) follows from (2.1) and (2.2) because L1⊔L2 and L1#L2

are related by a saddle cobordism. Similarly, (2.4) can be deduced from (2.1)
and (2.2) because there is a cobordism, consisting of |L| saddle cobordisms,
which connects L ⊔ L̄ to the |L|–component unlink. �

2.3 Obstructions to sliceness

A knot K ⊂ R3 × {0} is called a slice knot if it bounds a smooth disk
S ⊂ R3 × (−∞, 0]. The notion of sliceness admits different generalizations
to links. We say that an oriented link L is slice in the weak sense if there
exists an oriented smooth connected surface S ⊂ R3 × (−∞, 0] of genus zero,
such that ∂S = L. L is slice in the strong sense if every component bounds
a smooth disk in R3 × (−∞, 0] and all these disks are disjoint. Recently,
D. Cimasoni and V. Florens [CF] unified different notions of sliceness by
introducing colored links.

The Rasmussen invariant of links is an obstruction to sliceness.

Lemma 7 Let L be slice in the weak sense, then

|s(L)| ≤ |L| − 1.
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Proof. If L is slice in the weak sense, then there exist an oriented genus 0
cobordism from L to the unknot. Applying (2.1) to this cobordism we get
the result. �

The multivariable Levine–Tristram signature defined in [CF] is also an
obstruction to sliceness. However, for knots with trivial Alexander polyno-
mial, the Levine–Tristram signature is constant and equal to the ordinary
signature. Therefore, for a disjoint union of such knots the Rasmussen link in-
variant is often a better obstruction than the multivariable signature. Using
Shumakovitch’s list of knots with trivial Alexander polynomial, but non–
trivial Rasmussen invariant [S2] and Knotscape, one can easily construct
examples. E.g. the multivariable signature of K15n28998

⊔K15n40132
⊔K13n1496

vanishes identically, however s(K15n28998
⊔K15n40132

⊔K13n1496
) = 4 > 3 − 1,

hence this split link is not slice in the weak sense. Similarly, the Rasmussen
invariant, but not the signature, is an obstruction to sliceness for the follow-
ing split links: K15n113775

⊔K14n7708
, K15n58433

⊔K15n58501
, etc.



3 Conway mutation

In this chapter, we present an easy example of mutant links with different
Khovanov homology. The existence of such an example is important because
it shows that Khovanov homology cannot be defined with a skein rule similar
to the skein relation for the Jones polynomial.

3.1 Definition

The mutation of links was originally defined in [Co]. We will use the definition
given in [Mu]. In Figure 3.1, T denotes an oriented (2, 2)–tangle (i.e. a tangle
which has four endpoints on the dotted circle, as in Figure 1.10).

T T

h2 h3h1

T

Figure 3.1: The half–turns h1, h2 and h3

Let h1, h2 and h3 be the half–turns about the indicated axes. Define three
involutions ρ1, ρ2 and ρ3 on the set of oriented (2, 2)–tangles by ρ1T :=
h1(T ), ρ2T := −h2(T ) and ρ3T := −h3(T ) (where −h2(T ) and −h3(T )
are the oriented 2–tangles obtained from h2(T ) and h3(T ) by reversing the

T T1 2

Figure 3.2: The closure of the composition of T1 and T2
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orientations of all strings). For two oriented (2,2)–tangles T1 and T2, denote
by T1T2 the composition of T1 and T2 and by (T1T2)

∧ the closure of T1T2 (see
Figure 3.2).

Two oriented links L and L′ are called Conway mutants if there are two
oriented (2, 2)–tangles T1 and T2 such that for an involution ρi (i = 1, 2, 3)
the links L and L′ are respectively isotopic to (T1T2)

∧ and (T1ρiT2)
∧.

Theorem 6 Let L and L′ be Conway mutants. Then L and L′ are skein
equivalent.

Proof. The proof goes by induction on the number c of crossings of T2. For
c ≤ 1, T2 and ρiT2 are isotopic, whence L ∼ L′. For c > 1, modify a crossing
of T2 to obtain a skein triple of tangles (T+, T−, T0) (with either T+ = T2

or T− = T2, depending on whether the crossing is positive or negative).
Denote by (L+, L−, L0) and (L′

+, L
′
−, L

′
0) the skein triples corresponding to

(T+, T−, T0) and (ρiT+, ρiT−, ρiT0) respectively (i.e. L+ = (T1T+)∧, L− =
(T1T−)∧ and so on). By induction, L0 ∼ L′

0. Therefore, by the definition
of skein equivalence, L+ ∼ L′

+ if and only if L− ∼ L′
−. In other words,

switching a crossing of T2 does not affect the truth or falsity of the assertion.
Since T2 can be untied by switching crossings, we are back in the case c ≤ 1.
�

Corollary 1 The Jones polynomial is invariant under Conway mutation.

3.2 Mutation non–invariance of Khovanov homology

Let P (L) denote the graded Poincaré polynomial of the complex C(L), i.e.
let

P (L)(t, q) :=
∑

i,j

tiqj dimQ(Hi,j(L) ⊗ Q) ∈ Z[t±1, q±1] .

By Theorem 4, we have P (L)(−1, q) = J(L)(q), and by Corollary 1, J(L) is
invariant under Conway mutation. On the other hand, the following theorem
gives examples of mutant links which are separated by I(L)(t) := P (L)(t, 1).

Theorem 7 Let Ki (i = 1, 2) be a (2, ni) torus link, with ni > 2. Then the
oriented links

L := ©⊔ (K1#K2) and L′ := K1 ⊔K2

are Conway mutants with I(L) 6= I(L′). Here, © denotes the trivial knot
and K1#K2 is the connected sum of the oriented links K1 and K2. Note that
the connected sum is well–defined even if Ki has two components, because in
this case the link Ki is symmetric in its components.
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K K1 2

L ’L

1T 2T

K K2
1

1T 1h 2T

Figure 3.3: Figure : L and L′ are Conway mutants

Proof. From Figure 3.3 it is apparent that L and L′ are Conway mutants.
The Khovanov complex of the trivial knot is

. . . −→ 0 −→ 0 −→ AKh −→ 0 −→ 0 −→ . . .

Since rank(AKh) = 2, we get I(©) = 2, and since P is multiplicative under
disjoint union (see [Kh1, Proposition 33]), this implies I(L) = 2I(K1#K2).
On the other hand, [Kh1, Proposition 35] tells us that

I(Ki) = 2 + t−2 + t−3 + . . .+ t−(ni−1) + t−ni

for odd ni, and

I(Ki) = 2 + t−2 + t−3 + . . .+ t−(ni−1) + 2t−ni

for even ni. Since we assume ni > 2, we get that I(Ki) is not divisible
by 2. It follows that I(L′) = I(K1)I(K2) is not divisible by 2, and hence
I(L′) 6= I(L). �

Theorems 6 and 7 immediately imply:

Corollary 2 The skein equivalence class of a link does not determine its
Khovanov homology. In particular, Khovanov homology is strictly stronger
than the Jones polynomial.

Remark. Theorem 7 remains true if we allow (2, ni) torus links Ki with
ni < −2 (to see this, use [Kh1, Corollary 11], which relates the Khovanov
homology of a link to the Khovanov homology of its mirror image). However,
the condition |ni| > 2 is necessary. In fact, if one of the |ni| is ≤ 1, then the
corresponding torus link Ki is trivial and hence L and L′ are isotopic. If one
of the |ni|, say |n2|, is equal to 2, then K2 is a Hopf link and hence L and L′

are related to ©⊔K1 by Hopf link addition (see Section 4.3). Now it follows
from Theorem 9 (Section 4.3) that Hi,j(L) and Hi,j(L′) are both isomorphic
to Hi+2,j+5(©⊔K1) ⊕Hi,j+1(©⊔K1).
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Remark. As yet, it is not known whether there are mutant knots (1–
component links) with different Khovanov homology. An argument of D. Bar–
Natan [B4], which would show invariance of Khovanov homology under knot
mutation, was remarked to be incomplete by the author.

3.3 Computer Calculations with KhoHo

Tables 3.1 and 3.2 show the Khovanov homology of L and L′ for the case
n1 = n2 = 3. The tables where generated using A. Shumakovitch’s program

KhoHo [S1]. The entry in the i–th column and the j–th row looks like
a[b]
c

,

where a is the rank of the homology group Hi,j , b the number of factors Z/2Z

in the decomposition of Hi,j into p–subgroups, and c the rank of the chain
group Hi,j. The numbers above the horizontal arrows denote the ranks of
the chain differentials.

In the examples, only 2–torsion occurs. The reader may verify that not
only the ranks but also the torsion parts of the Hi,j are different for L and L′.
The ranks of Ci,j(L) and Ci,j(L′) agree because there is a natural one–to–one
correspondence between the Kauffman states of L and L′.
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-6 -5 -4 -3 -2 -1 0

-2 1
1

2 4 2-4 0
2

−−→ 0
6

−−→ 0
6
−−→ 2

4

1 5 10 18 13 5-6 0
1
−−→ 0

6
−−→ 0

15
−−→ 0

28
−−→ 2

33
−−→ 0

18
−−→ 1

6

6 24 36 38 14 4
-8 0

6
−−→ 0

30
−−→ 0

60
−−→ 0

74
−−→

2[2]
54

−−→ 0
18

−−→ 0
4

15 45 44 28 5 1
-10 0

15
−−→ 0

60
−−→ 1

90
−−→ 2

74
−−→

0[2]
33

−−→ 0
6
−−→ 0

1

20 39 20 6
-12 0

20
−−→ 1

60
−−→

1[1]
60

−−→ 2
28

−−→ 0
6

15 13 2
-14 0

15
−−→

2[1]
30

−−→
0[1]
15

−−→ 0
2

5
-16 1

6
−−→

1[1]
6

-18 1
1

Table 3.1: Ranks of Hi,j and Ci,j and ranks of the differentials for the disjoint

union of the unknot and the granny–knot
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-6 -5 -4 -3 -2 -1 0

-2 1
1

2 4 2-4 0
2

−−→ 0
6

−−→ 0
6
−−→ 2

4

1 5 10 18 13 5-6 0
1
−−→ 0

6
−−→ 0

15
−−→ 0

28
−−→ 2

33
−−→ 0

18
−−→ 1

6

6 24 36 38 14 4
-8 0

6
−−→ 0

30
−−→ 0

60
−−→ 0

74
−−→

2[2]
54

−−→ 0
18

−−→ 0
4

15 45 44 28 5 1
-10 0

15
−−→ 0

60
−−→ 1

90
−−→ 2

74
−−→

0[2]
33

−−→ 0
6
−−→ 0

1

20 40 20 6
-12 0

20
−−→ 0

60
−−→

0[2]
60

−−→ 2
28

−−→ 0
6

15 13 2
-14 0

15
−−→

2[1]
30

−−→
0[1]
15

−−→ 0
2

6
-16 0

6
−−→

0[2]
6

-18 1
1

Table 3.2: Ranks of Hi,j and Ci,j and ranks of the differentials for the disjoint

union of two trefoil knots



4 The spanning tree model

In [T], M. Thistlethwaite described a relation between the Kauffman bracket
of a knot diagram D and the Tutte polynomial of the Tait graph of D. He
showed that the Kauffman bracket admits an expansion as a sum over terms
corresponding to spanning trees of the Tait graph.

In [We2], the author constructed an analogue of this expansion for Kho-
vanov homology. Independently, A. Champanerkar and I. Kofman [CK] pro-
posed a similar construction, based on a technically different argument.

In this chapter, we first review the spanning tree expansion for the Kauff-
man bracket. Our approach is different from Thistlethwaite’s, making no
explicit reference to the Tutte polynomial. In Section 4.2, we show how our
ideas lead to a spanning tree model for the Khovanov bracket. In the re-
maining sections, we give several applications, among these a new proof of
E. S. Lee’s [L1] theorem on the support of the Khovanov homology of alter-
nating knots, and a short proof of a theorem on the behavior of the Khovanov
bracket under Hopf link addition.

4.1 Spanning tree model for the Kauffman bracket

4.1.1 A simpler formula for the Kauffman bracket. Suppose D is
an unoriented link diagram whose crossings are numbered. Recall that the
Kauffman bracket of D satisfies

〈D〉 =
∑

D′∈K(D)

〈D|D′〉〈D′〉 (4.1)

where 〈D|D′〉 = (−q)r(D,D′). Formula (4.1) can be deduced recursively from
the rule 〈/〉 = 〈H〉 − q〈1〉, as follows: first, we expand 〈D〉 as a sum of two
terms by applying 〈/〉 = 〈H〉− q〈1〉 to crossing number 1. Next, we expand
each these two terms by applying 〈/〉 = 〈H〉 − q〈1〉 to crossing number 2.
Continuing like this, we finally reach the Kauffman states and hence recover
(4.1). The procedure is visualized in the binary tree below.

39
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321

−q

−q

−q−q −q −q

−q

Figure 4.1: Binary tree used to deduce (4.1) from 〈/〉 = 〈H〉 − q〈1〉.

In case D is connected, we can compute the Kauffman bracket of D
more efficiently, by modifying the above procedure as follows: as before, we
successively expand terms by applying the relation 〈/〉 = 〈H〉 − q〈1〉 to the
crossings. But before expanding a term, we check the connectivity of the two
diagrams H and 1 appearing on the right–hand side of 〈/〉 = 〈H〉 − q〈1〉.
If one of them is disconnected, we do not expand the crossing / in the given
term, and instead continue with the next crossing. The improved procedure
is visualized in Figure 4.2.

321

−q

−q

Figure 4.2: Binary tree used to deduce (4.2).

The improved procedure leads to the expansion

〈D〉 =
∑

D′∈T (D)

〈D|D′〉〈D′〉 . (4.2)

where T (D) denotes the set of all link diagrams sitting at the leaves of the
tree in Figure. Note that T (D) depends on the numbering of the crossings
of D.
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To turn (4.2) into an explicit formula, we have to calculate the Kauff-
man brackets 〈D′〉. Let D′ be an element of T (D). By construction, D′ is
connected and every crossing of D′ is splitting (i.e. connects two otherwise
disconnected parts of D′). Therefore, D′ represents the unknot and it can be
transformed into the trivial diagram using Reidemeister move R1 only. We
call a diagram with this property R1–trivial. After orienting D′ arbitrarily,
we get J(D′) = J(©) = q + q−1 and hence

〈D′〉 = (−1)c−(D′)q2c−(D′)−c+(D′)(q + q−1) . (4.3)

Inserting (4.3) into (4.2), we obtain

〈D〉 =
∑

D′∈T (D)

(−q)r(D,D′)(−1)c−(D′)q2c−(D′)−c+(D′)(q + q−1) . (4.4)

Note that the set of Kauffman states K(D) is the disjoint union of all sets
K(D′), for all D′ ∈ T (D). We construct a map

K(D) −→ T (D)
S 7−→ DS

by defining DS to be the unique element of T (D) satisfying S ∈ K(DS). Let
K1(D) ⊂ K(D) denote the set of all Kauffman states which consist of exactly
one circle. When restricted to K1(D) ⊂ K(D), the above map becomes a
bijection. Indeed, since D′ ∈ T (D) is R1–trivial, we have #K1(D

′) = 1 and
hence D′ has a unique preimage in K1(D).

We may rewrite (4.2) as

〈D〉 =
∑

S∈K1(D)

〈D|DS〉〈DS〉. (4.5)

Formula (4.4) becomes

〈D〉 =
∑

S∈K1(D)

(−q)r(D,DS)(−1)c−(DS)q2c−(DS)−c+(DS)(q + q−1)

=
∑

S∈K1(D)

(−1)r(D,S)−w(DS)qr(D,S)−2w(DS)(q + q−1)
(4.6)

where the second equality follows by observing that r(D,DS) = r(D,S) −
r(DS, S) = r(D,S)− c+(DS) and by writing w(DS) for c+(DS) − c−(DS).3

3Note that w(DS) was defined with opposite sign in [We2].



42 CHAPTER 4. THE SPANNING TREE MODEL

4.1.2 The relation with spanning trees. Assume that the regions of
D are colored black and white in a checkerboard fashion, such that any two
neighbored regions have opposite colors, and such that the unbounded region
is colored white. The Tait graph ΓD is the planar graph whose vertices are
the black regions and whose edges correspond to the crossings of D (see
Figure 4.3).

ΓDD

Figure 4.3: The Tait graph.

Given a smoothing of a crossing of D, we call it a black or a white smoothing
depending on whether it connects black or white regions of D.

Let T (ΓD) denote the set of all spanning trees of ΓD. There is a bijection

T (ΓD) −→ K1(D)
T 7−→ ST

defined as follows: to a tree T we associate the connected Kauffman state ST

obtained by choosing the black smoothing for precisely those crossings which
correspond to an edge of T , and the white smoothing for all other crossings.
Using the above bijection, we can can rewrite formula (4.5) as

〈D〉 =
∑

T∈T (ΓD)

〈D|DT 〉〈DT 〉

where we have abbreviated DT for DST
.

The correspondence between spanning trees and elements of K1(D) leads
to an easy proof of the following lemma.

Lemma 8 The number of black smoothings is the same in all S ∈ K1(D).

Proof. Since black smoothings in ST correspond to edges of T , it suffices to
show that all spanning trees of ΓD have the same number of edges. But this
is obvious, because the number of edges in any spanning tree is just one less
than the number of vertices of ΓD. �
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Figure 4.4: A knot projection, and two smoothings related by a state trans-
position.

An alternative proof of Lemma 8 uses Kauffman’s Clock Theorem [Ka1].
By the Clock Theorem, any two elements of K1(D) are related by a finite
sequence of state transpositions (see Figure 4.4). The lemma follows because
state transpositions do not change the number of black smoothings.

Of course, the lemma also implies that the number of white smoothings
is the same in all S ∈ K1(D).

4.2 Spanning tree model for the Khovanov bracket

In this section, we discuss how the construction of Section 4.1 transfers to
the formal Khovanov bracket. The main result is stated in the following
theorem.

Theorem 8 Let D be a connected link diagram. Then the formal Khovanov
bracket [[D]] destabilizes to a subcomplex ST (D). On the level of objects (i.e.
if one ignores the differential), ST (D) is isomorphic to

ST (D) ∼=
⊕

S∈K1(D)

U [r(D,S) − w(DS)]{r(D,S) − 2w(DS)} (4.7)

where U := [[©]] denotes the formal Khovanov bracket of the trivial diagram
consisting of a single circle. We call ST (D) the spanning tree subcomplex
of [[D]].

Theorem 8 can be viewed as a “categorification” of formula (4.6). Indeed,
since U ∼= ∅{1} ⊕ ∅{−1} by Lemma 3, the shifts of the gradings in (4.7)
agree with the powers of −1 and q in (4.6). Before proving the theorem, we
mention two corollaries.

Corollary 3 Let D be a connected link diagram. Then C(D) destabilizes to
the subcomplex FKh(ST (D)) ⊂ C(D). As a bigraded module, FKh(ST (D)) is
isomorphic to

FKh(ST (D)) ∼=
⊕

S∈K1(D)

AKh[r(D,S) − w(DS)]{r(D,S) − 2w(DS)} .
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FKh(ST (D)) will be called the spanning tree subcomplex of C(D).

Using that AKh = Z1 ⊕ ZX and deg(1) = +1 and deg(X) = −1, we get
the following estimate for the ranks of the Khovanov homology groups:

Corollary 4 Let D be a connected link diagram. Then

dimQ(H(D) ⊗ Q) ≤ 2(#K1(D)) .

Moreover, the rank of H
i,j

(D) is bounded from above by the number of S ∈
K1(D) with r(D,S) − w(DS) = i and r(D,S) = 2i− j ± 1.

Corallary 4 shows that the ranks of the homology groups H
i,j

(D) tend to be

much smaller than the ranks of the chain groups C
i,j

(D). This is consistent
with Bar–Natan’s experimental observation [B1].

Proof of Theorem 8. To prove the theorem, we reformulate the arguments
which led us to formula (4.6) in Section 4.1 in the setting of the formal
Khovanov bracket.

First, we consider a diagram D′ ∈ T (D) sitting at a leaf of the bi-
nary tree of Figure 4.2. Since D′ is R1–trivial, part 1 of Lemma 4 (Sub-
section 1.3.5) implies that [[D′]] destabilizes to a subcomplex isomorphic to
U [c−(D′)]{2c−(D′) − c+(D′)}. Comparing this with (4.3), we see that the
theorem is true for the diagrams sitting at the leaves of the tree.

Now we proceed inductively, going up the tree. Let D1 be a diagram
sitting at an internal node of the tree, and let D2 and D3 be the two dia-
grams sitting right below that node. By induction, the complexes [[D2]] and
[[D3]] destabilize to subcomplexes ST (D2) and ST (D3). Moreover, [[D1]] is iso-
morphic to the mapping cone of a chain transformation between [[D2]] and
[[D3]] {1} (see (1.11)). By Lemma 2 (Subsection 1.3.1), forming the map-
ping cone “commutes” with destabilization. Therefore, [[D1]] destabilizes to
a subcomplex ST (D1) which is isomorphic to the mapping cone of a chain
transformation between ST (D2) and ST (D3){1}. In particular, on the level
of objects we have ST (D1) ∼= ST (D2) ⊕ ST (D3){1}[1]. Using this as a sub-
stitute for the relation 〈D1〉 = 〈D2〉 − q〈D3〉, and arguing as in Section 4.1,
we get the theorem. �

Remark. Let D be a link diagram. After selecting a point P on an edge
of D, we can endow C(D) with the structure of an AKh–module, as follows:
multiplication by 1 ∈ AKh is the identity map; multiplication by X ∈ AKh

is induced by “multiplying” with a dot at point P . The reduced Khovanov
complexes are the complexes C(D)⊗AKh

ZX and C(D)⊗AKh
(AKh/ZX), where
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ZX ⊂ AKh denotes the AKh–submodule of AKh generated by X ∈ AKh. If
one performs the R1 moves in the proof of Theorem 8 far away from P ,
the isomorphism in Corollary 3 becomes an isomorphism of AKh–modules.
By tensoring with ZX and AKh/ZX, one gets spanning tree models for the
reduced Khovanov complexes.

Remark. Spanning trees of the Tait graph also appear as generators of the
knot Floer complex [OS1]. Hence the spanning tree model might shed some
light on the relation between Khovanov homology and knot Floer homology.

4.3 Hopf link addition

In this section, we apply the spanning tree model to prove a theorem, which
was originally proved (for Khovanov homology) by M. Asaeda and J. Przy-
tycki [AP]. As mentioned in [We1], the theorem also follows from [Kh1,
Corollary 10].

Theorem 9 Assume the link diagram D#H is obtained from a link dia-
gram D by Hopf link addition (see Figure 4.5). Then the complex [[D#H ]]
destabilizes to the direct sum [[D]] [0]{−1} ⊕ [[D]] [2]{3}.

Figure 4.5: Hopf link addition.

To prove the theorem, we observe that the spanning tree model extends
to (1, 1)–tangles, i.e. tangles having exactly two boundary points, as in
Figure 4.6. The only difference is that the Tait graph of a (1, 1)–tangle
has a distinguished vertex (the vertex which corresponds to the black region
adjacent to the dotted circle), and hence the spanning trees are rooted.

Figure 4.6: A (1, 1)–tangle.
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Let H ′ denote the (1, 1)–tangle shown in Figure 4.6. Inserting H ′ into
an edge of D has the same effect as summing a Hopf link to that edge of D.
The Tait graph of H ′ has exactly two spanning trees.

H’

ΓH’

Figure 4.7: Tait graph of H ′.

Now the spanning tree model tells us that [[H ′]] destabilizes to a subcomplex
ST (H ′), which is isomorphic on the level of objects to [[ | ]] [0]{−1}⊕[[ | ]] [2]{3}.
Here “ | ” denotes the trivial (1, 1)–tangle, consisting of a single vertical line.
Note that the homological gradings of the two summands in [[ | ]] [0]{−1} ⊕
[[ | ]] [2]{3} differ by two. Therefore, ST (H ′) must have trivial differential,
and so the isomorphism ST (H ′) ∼= [[ | ]] [0]{−1} ⊕ [[ | ]] [2]{3} is actually an
isomorphism of complexes. Using the good composition properties of the
Khovanov bracket with respect to gluing of tangles, we get the theorem.

4.4 Alternating knots

The theorems in this section were conjectured by D. Bar–Natan, S. Garo-
ufalidis and M. Khovanov [B1] and proved by E. S. Lee [L1]. We give new
proofs using the spanning tree model. For short proofs, see also [AP].

A knot diagram is said to be alternating if one alternately over– and
undercrosses other strands as one goes along the knot in that diagram. A
knot is called alternating if it possesses an alternating diagram.

Lemma 9 Let D be an alternating knot diagram. Then the number of 1–
smoothings in S is the same for all S ∈ K1(D).

Proof. Since D is alternating, we necessarily have one of the following
two situations: either the 1–smoothings coincide with the black smoothings,
or the 1–smoothings coincide with the white smoothings. Hence Lemma 9
follows from Lemma 8 of Subsection 4.1.2. �

Given an an alternating knot diagram D, we denote by n1(D) := r(D,S)
the number of 1–smoothings in any S ∈ K1(D). Corollary 4 implies:
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Theorem 10 Let D be an alternating knot diagram. H
i,j

(D) is zero unless
the pair (i, j) ∈ Z2 lies on one of the two lines j = 2i− n1(D) ± 1.

Let i− and i+ denote the smallest and largest integer i for which there is
an S ∈ K1(D) such that r(D,S) − w(DS) = i. Let j− := 2i− − n1(D) − 1
and j+ := 2i+ − n1(D) + 1.

Since the spanning tree subcomplex FKh(ST (D)) of an alternating knot
diagram D is concentrated on the two lines j = 2i − n1(D) ± 1, and since
the differential has bidegree (1, 0), we get the following theorem.

Theorem 11 Let D be an alternating knot diagram. Then

1. H
i,j

(D) is zero unless i− ≤ i ≤ i+.

2. H
i,j

(D) is torsion free unless j = 2i− n1(D) − 1.

3. H
i−,j−

(D) and H
i+,j+

(D) are non–zero and torsion free.

Recall that a crossing of D is called splitting if it connects two otherwise
disconnected parts of D.

Theorem 12 Let D be an alternating knot diagram with c crossings. As-

sume that no crossing of D is splitting. Then H
i−,j−

(D) = H
i+,j+

(D) = Z.
Moreover, i− = 0 and i+ = c.

Proof. By part 3 of the previous theorem, we know that H
i−,j−

(D) and

H
i+,j+

(D) are free abelian groups of rank at least one. To show that the
rank is exactly one, it suffices to show that there is only one S ∈ K1(D)
contributing to the lowest degree i−, i.e. such that r(D,S) − w(DS) = i−,
and likewise only one S ∈ K1(D) contributing to the highest degree i+, i.e.
such that r(D,S) − w(DS) = i+.

Actually, we prove something slightly different. Recall that the spanning
tree construction depends on a numbering of the crossings ofD. In particular,
the diagram DS associated to S ∈ K1(D) depends on the numbering of the
crossings. What we show is that for any S ∈ K1(D), there exists a numbering
such that S is the unique state contributing to lowest/highest degree. This
is the content of the following lemma. �

Lemma 10 Let D be an alternating knot diagram with c crossings, all of
which are non–splitting, and let S be an element of K1(D).

1. There is a numbering of the crossings of D such that −w(DS) =
−n1(D), and −w(DS′) > −n1(D) for all S ′ ∈ K1(D) with S ′ 6= S.
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2. Likewise, there is a numbering of the crossings ofD such that −w(DS) =
c− n1(D), and −w(DS′) < c− n1(D) for all S ′ ∈ K1(D) with S ′ 6= S.

Proof. 1. Let S be an element of K1(D). Assume that the crossings of
D are numbered in such a way that the crossings which are 0–smoothings
in S precede those which are 1–smoothings in S. We claim that for this
numbering, the relations in part 1 of Lemma 10 are satisfied, i.e. −w(DS) =
−n1(D), and −w(DS′) > −n1(D) for all S ′ ∈ K1(D) with S ′ 6= S.

To see this, we consider the link diagramsDk, 0 ≤ k ≤ c−n1(D), obtained
from D by replacing the first k crossings of D by their 0–smoothings, while
leaving the remaining c − k crossings unchanged. We denote by D′ the
diagram D′ := Dc−n1(D). Note that if one replaces all crossings in D′ by their
1–smoothings, the result is the state S. Since S is connected, so is D′, and
so are all Dk with k ≤ c− n1(D).

Because D is alternating, we may assume without loss of generality that
the 1–smoothings in S are the black smoothings, and hence correspond to
the edges of the spanning tree associated to S. Using that every edge in a
tree connects two otherwise disconnected parts, we get that every crossing of
D′ is splitting, i.e. connects to otherwise disconnected parts of D′.

Claim. DS = D′.

Proof of the claim. Recall the binary tree of Figure 4.2, which was used
to deduce the spanning tree expansion. If at all D′ appears in this tree, then
the afore mentioned properties of D′ imply that it must be the leaf DS.

Thus, it suffices show that the sequence D = D0, D1, . . . , Dc−n1(D) = D′

appears along a path going down the binary tree. Since Dk+1 results from
Dk by resolving the first crossing of Dk, we only have to check that for all
k < c− n1(D) the first crossing of Dk is non–splitting. This can be done by
observing that the last n1(D) crossings of Dk form the edges of a spanning
tree (same argument as used above for D′), and using that the Tait graph
of D is loop–less because all crossings of D are non–splitting. We leave the
details to the reader. �

So we have that DS = D′, and we also know that the (unsmoothened)
crossings in D′ are the 1–smoothings in S. Since DS is connected and since
all of its crossings are splitting, this implies that all crossings of DS must
be positive with respect to an arbitrary orientation of DS. We conclude
w(DS) = c+(DS) = n1(D).

Now consider S ′ ∈ K1(D) with S ′ 6= S. Recall that S and S ′ both
have exactly n1(D) 1–smoothings. In S the 1–smoothings come after the
0–smoothings. Therefore, the first crossing of D where S and S ′ differ has
to be a 0–smoothing in S and a 1–smoothing in S ′. Being a 0–smoothing
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in S, this crossing is smoothened in DS = D′. We leave it to the reader to
conclude that it also has to be smoothened in DS′. Thus we have found a 1–
smoothing in S ′ which is smoothened in DS′. This implies c+(DS′) < n1(D)
(cf. previous paragraph) and hence −w(DS′) ≥ −c+(DS′) > −n1(D).

2. The second part of the lemma is proved analogously, by numbering
the crossings of D in such a way that the crossings which are 1–smoothings
in S precede those which are 0–smoothings in S. �

The above proof was inspired by [T]. For a different proof of a similar
statement, see [Kh1, Section 7.7].

Corollary 5 If a knot possesses an alternating diagram with c crossings, all
of which are non–splitting, then the knot does not admit a diagram with fewer
than c crossings.

Proof. By part 1 of Theorem 11, i+(D) and i−(D) are equal to the highest
and the lowest homological degree in which H(D) is non–zero. Therefore,
the difference i+(D) − i−(D) is a lower bound for the number of crossings
of D. Moreover, i+(D) − i−(D) is a knot invariant. Now assume that D is
an alternating diagram with c crossings, all of which are non–splitting. By
Theorem 12, we have i+(D)− i−(D) = c, and hence the corollary follows. �

Remark. For alternating knots, the spanning tree model allows to calculate
the reduced Khovanov homology completely. Indeed, for an alternating knot
the reduced spanning tree subcomplex is supported on a single line j =
2i+ const in the ij–plane. Since the differential has bidegree (1, 0), it must
vanish. Therefore, the reduced spanning tree subcomplex is isomorphic to
the reduced Khovanov homology of the alternating knot.

Remark. We can also consider the subcomplex FLee(ST (D)) ⊂ C′(D).
While we know explicit generators for Lee homology from Section 2.1, the
spanning tree description of Lee’s complex has the advantage that it also
makes a statement about the filtration, and that it works well for Lee homol-
ogy over Z coefficients. Theorem 10 and part 1 of Theorem 11 remain valid
for Lee homology.

Example. Let D be a standard diagram of the left handed trefoil. Let
FZ

Lee denote Lee’s functor with Z coefficients, and let AZ
Lee := FZ

Lee(©) (so
AZ

Lee = AKh, except that AZ
Lee is filtered whereas AKh is graded). We have

FZ
Lee(ST (D)) ∼= AZ

Lee[0]{−1} ⊕AZ
Lee[2]{3} ⊕AZ

Lee[3]{5}



50 CHAPTER 4. THE SPANNING TREE MODEL

The differential is zero on AZ
Lee[0]{−1}, and it maps 1, X ∈ AZ

Lee[2]{3} to
2X, 2 · 1 ∈ AZ

Lee[3]{5}. Hence

H′(D; Z) ∼= AZ
Lee[0]{−1} ⊕ (AZ

Lee/2A
Z
Lee)[3]{5}

Note that there is 2–torsion in bidegree (3, 6), despite the fact that the pair
(3, 6) lies on the upper of the two lines mentioned in Theorem 10, and despite
the fact that (3, 6) = (i+, j+). Hence parts 2 and 3 of Theorem 11 do not
transfer to Lee homology with Z coefficients.



5 Framed link cobordisms

In this chapter, we introduce movie presentations and movie moves for framed
link cobordisms.

5.1 Framed links

Let L ⊂ R3 be a link. A framing of L is a homotopy class of trivializations
of the normal bundle of L in R3. Equivalently, a framing can be defined as
homotopy class of non–singular normal vector fields on L. A link equipped
with a framing is called a framed link.

Let K ⊂ R3 be a knot and let f be a framing of K. Represent f by a
non–singular normal vector field, and assume that the vectors are sufficiently
short, so that their tips trace out a knot K ′ parallel to K. The framing
coefficient of f is the linking number n(f) := lk(K,K ′) of K and K ′. One
can show that f is completely determined by its framing coefficient n(f).

If L is a link, a framing of L can be specified by specifying a framing fi

for each component Li of L. The total framing coefficient of L is defined by

n(f) :=
∑

i

n(fi) + 2
∑

i<j

lk(Li, Lj) .

There are several methods for describing framed links. One possibility
is to take an ordinary link diagram D and then think of it as presenting a
framed link, framed by the blackboard framing, i.e. by the framing which
is given by a vector field which is everywhere parallel to the plane of the
picture.

Figure 5.1: The blackboard framing.

51
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It is easy to see that the framing coefficient of the blackboard framing is
equal to the writhe of D. Since the writhe changes by ±1 under move R1, the
blackboard framing is not invariant under this move. However, it is invariant
under the move FR1 shown in Figure 5.2. In fact, if one uses the blackboard
framing to present framed links, then two link diagrams represent isotopic
framed links if and only if they are related by a finite sequence of the moves
FR1, R2 and R3.

FR1

Figure 5.2: The framed Reidemeister move FR1.

Another way of presenting framed links uses link diagrams with signed
points4. A link diagram with signed points is a link diagram D, together
with a finite collection of distinct points, lying on the interiors of the edges
of D, and labelled by + or −. Such a diagram presents a framed link, with
framing fD given as follows: fD is represented by a vector field which is
everywhere parallel to the drawing plane, except in a small neighborhood of
the signed points, where it winds around the link, in such a way that each
positive point contributes +1 to n(fD) and each negative point contributes
−1. Note that n(fD) = w(D) + t(D), where t(D) denotes the difference
between the numbers of positive and negative signed points in D.

SR1

Figure 5.3: The signed Reidemeister move SR1.

The signed first Reidemeister move SR1, shown above, leaves n(fD) un-
changed. It follows that two link diagrams with signed points describe iso-
topic framed links if and only if they are related by a finite sequence of the
following moves: the moves SR1, R2 and R3, as well as creation/annihilation

4 Link diagrams with signed points were introduced in [BW], where they were called
“link diagrams with marked points”.
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of pairs of nearby oppositely signed points, and sliding signed points past
crossings.

The m–cable of a framed knot K is the m–component link Km, obtained
by replacing K by m parallel strands, pushed off in the direction of the
framing vector field.

Figure 5.4: 3–cable of a framed knot (framed by the blackboard framing).

5.2 Framings on submanifolds of codimension 2

The concept of framings is not restricted to links. In this section, we study
framings on arbitrary submanifolds of codimension 2.

Let M be a smooth oriented (n + 2)–manifold and let N ⊂ M be a
smooth oriented compact submanifold of M of dimension n. A framing of N
is a homotopy class of trivialization of the normal bundle νN of N ⊂ M . If N
has non–empty boundary and a trivialization t of νN |∂N is specified, we define
a relative framing of N (relative to t) as a homotopy class of trivializations
of νN which agree with t over ∂N .

Lemma 11 Let t be a trivialization of νN |∂N . If non–empty, the set of
relative framings of N (relative to t) is an affine space over Hn−1(N).

Proof. Since νN is an oriented 2–plane bundle, its structural group is SO(2).
Therefore the difference between two relative framings is given by a homotopy
class of maps from the pair (N, ∂N) to the pair (SO(2), 1), i.e. by an element
of [N, ∂N ;SO(2), 1]. Using that SO(2) is a K(Z, 1) space, we can identify
[N, ∂N ;SO(2), 1] with H1(N, ∂N). And by Poincaré duality, H1(N, ∂N) is
isomorphic to Hn−1(N). �

Let us consider pairs (E, t) where E is an oriented 2–plane bundle over
N , and t is a trivialization of E|∂N . We call two such pairs (E, t) and (E ′, t′)
isomorphic if there is an isomorphism F : E → E ′ of oriented 2–plane bundles
such that t′ ◦ F = t over ∂N .

Lemma 12 Isomorphism classes of pairs (E, t) correspond bijectively to el-
ements of Hn−2(N).
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Proof. Isomorphism classes of pairs (E, t) are classified by homotopy classes
of maps from the pair (N, ∂N) to the pair (BSO(2), p0), where p0 ∈ BSO(2)
is an arbitrary basepoint. Since BSO(2) is a K(Z, 2) space, we obtain
[N, ∂N ;BSO(2), p0] = H2(N, ∂N) = Hn−2(N). �

Let e(E, t) ∈ Hn−2(N) denote the homology class corresponding to the
pair (E, t). We immediately obtain:

Lemma 13 N admits a framing (relative to t) if and only if e(νN , t) = 0.

We are mainly interested in the case where N is a connected surface S,
embedded in a 4–manifold M . In this case, e(νS , t) is an integer e(νS, t) ∈
H0(S) = Z which can be described as follows: identify S with the zero section
of νS, and consider a section S ′ of νS, whose restriction to the boundary ∂S
is non–vanishing and constant with respect to the trivialization t. Then
e(νS, t) = S ·S ′ where S ·S ′ denotes the algebraic intersection number of the
surfaces S and S ′ in the total space of νS. Since S has a tubular neighborhood
in M which is diffeomorphic to the total space of νS, we can view e(νS, t) as
a relative self–intersection number of S in M .

Now assume e(νS, t) = 0. Then the set of relative framings on S is non–
empty and hence an affine space over H1(S) (by Lemma 11). The action of
H1(S) on framings can be described as follows. Let c be an oriented simple
closed curve on S representing an element of H1(S). Consider a tubular
neighborhood U ⊂ S of c, diffeomorphic to c × [0, 2π]. Let χc be the map
from S to SO(2) which is trivial on the complement of U and maps a point
(θ, ϕ) ∈ U = c× [0, 2π] to rotation by ϕ. Now [c] acts on framings by sending
the framing given by a vector field v(z) to the framing given by the vector
field χc(z)v(z). Note that the Poincaré dual PD−1[c] ∈ H1(S, ∂S) has the
following interpretation: let c′ be a properly embedded simple curve on S
representing an element of H1(S, ∂S). The restriction χc|c′ is a closed curve
in SO(2), which winds around SO(2) once at every intersection point of c′

with c. Hence the class of χc|c′ in π1(SO(2), 1) = Z is given by [χc|c′] =
c · c′ = 〈PD−1[c], [c′]〉.

5.3 Framed link cobordisms

Now let S ⊂ R3 × [0, 1] be a connected link cobordism between two oriented
framed links L0 and L1.

Lemma 14 S admits a relative framing, relative to the given framings of L0

and L1, if and only if the total framing coefficients of L0 and L1 agree.
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Proof. For the sake of simplicity, we restrict to the case where S is a
cobordism between knots K0 and K1. Let K ′

0 and K ′
1 be parallels of K0 and

K1, which are pushed off in the direction of the framing. Choose a cobordism
S0 ⊂ R3 × (−∞, 0] from the empty link to K0 ⊂ R3 × {0} and a cobordism
S1 ⊂ R3 × [1,∞) from K1 ⊂ R3 × {1} to the empty link. Consider small
perturbations S ′, S ′

0, S
′
1 of S, S0, S1, whose boundaries are K ′

0 and K ′
1. Then

F := S0 ∪ S ∪ S1 and F ′ := S ′
0 ∪ S

′ ∪ S ′
1 are closed oriented surfaces in R4.

Since F is null–homologous in R4, we obtain

0 = F · F ′ = S0 · S
′
0 + S · S ′ + S1 · S

′
1 = n(f0) + e(νS, f0 ∪ f1) − n(f1)

where f0 and f1 denote the framings of K0 and K1, respectively. Hence we
have n(f0) = n(f1) if and only if e(νS , f0 ∪ f1) = 0, if and only if S admits a
relative framing. �

5.4 Movie presentations for framed link cobordisms

A framed movie is a sequence of oriented link diagrams, such that any two
consecutive diagrams differ either by isotopy, a Morse move, a Reidemeister
move R2 or R3, or the framed Reidemeister move FR1. We can use such
a sequence to describe a framed link cobordism. Indeed, it is clear that
such as sequence presents a link cobordism, and a framing can be specified
by equipping every diagram of the sequence with the vector field which is
everywhere perpendicular to the plane of the picture.

Signed movies are defined similarly to framed movies. The only difference
is that here the link diagrams contain signed points and that two consecutive
diagrams may differ by SR1 instead of FR1, and also by annihilation/creation
of signed points and by sliding signed points past a crossing. Like framed
movies, signed movies can be used to present framed link cobordisms.

Theorem 13 ([BW]) 1. Every framed link cobordism has a signed movie
presentation. 2. Two signed movies present isotopic framed link cobordisms
if an only if there is a sequence of signed movie moves SM1–SM20 which
takes one movie to the other.

The signed movie moves SM1–SM20 are shown in Figures 5.5 and 5.6.

Proof of Theorem 13. 1. Let S be a link cobordism and let f be a
framing on S. By Theorem 1, there is an unsigned movie M representing the
unframed cobordism S. Inserting signed points into M , in such a way that
every R1 move in M becomes an SR1 move, we obtain a signed movie M ′,
which represents the cobordism S, framed by some framing f ′. It remains to
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Figure 5.5: Signed movie moves SM1–SM15. These moves are obtained by
inserting signed points into the Carter–Saito moves MM1–MM15, in such a
way that each R1 move becomes an SR1 move. The moves SM3–SM6, SM9–
SM11, SM14 and SM15 are not displayed because they are identical with the
corresponding unsigned moves. When lifting an R1 move to an SR1 move,
one has two possibilities where to insert the signed point (one can place the
signed point on either of the two sides of the curl). Only one possibility is
shown above.



5.4. MOVIES FOR FRAMED LINK COBORDISMS 57

−

−

−

−

−

−

−

−

−

+− −

−

−

−

+−

−

−

+

+

+−

+

+− − +

− + − +

+ −

SM16 SM17

SM18

SM20

SM19

Figure 5.6: Signed movie moves SM16–SM20.

show that f ′ can be changed to f by inserting additional signed points into
M ′.

To see this, note that the signed points in the movieM ′ trace out curves on
the cobordism S. These curves can be oriented consistently, by declaring that
positive (negative) points “move” backwards (forwards) in time. Conversely,
if c is an oriented closed curve on S, we can think of c as being traced out by
signed points. By inserting these points into the movie M ′, we can change
the framing represented by M ′.

−

−

−

−

+

+

+

+
c

S

Figure 5.7: Inserting an oriented closed curve c into a movie.
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Hence we obtain an action of oriented closed curves on the set of framings of
S. It is easy to see that this action coincides with the H1(S)–action discussed
in Section 5.2. Since the latter action is transitive, it follows that we can find
a configuration of signed points whose insertion into M ′ changes f ′ into f .

2. Let M ′ and M ′′ be two signed movies representing isotopic framed
cobordisms. Let U(M ′) and U(M ′′) denote the unsigned movies underlying
M ′ and M ′′ (i.e. the movies M ′ and M ′′ without the signed points). By
Theorem 1, there is a sequence of unsigned movies M1,M2, . . . ,Mm, such
that M1 = U(M ′) and Mm = U(M ′′), and such that Mi differs from Mi−1 by
one of the Carter–Saito moves MM1–MM15.

By definition, the moves SM1–SM15 are signed analogues of the moves
MM1–MM15. Hence we can lift the sequence U(M ′) = M1,M2, . . . ,Mm

movie by movie to a sequence of signed movies M ′ = M ′
1,M

′
2, . . . ,M

′
m, such

that U(M ′
i) = Mi and such that M ′

i differs from M ′
i−1 by one of the moves

SM1–SM15, and possibly some of the additional moves SM16–SM20.
Let us explain the role of the additional moves. Assume we have already

lifted the first i−1 movies M1,M2, . . . ,Mi−1 to a sequence M ′
1,M

′
2, . . . ,M

′
i−1.

Since Mi differs from Mi−1 by one of the moves MM1–MM15, it should be
possible to insert signed points into Mi, so that the result is a signed movie
M ′

i differing from M ′
i−1 by one of the signed moves SM1–SM15. However, it

might happen that the signed move is not directly applicable, for example
because M ′

i−1 contains unwanted signed points, lying in the region of the
cobordism where the signed move should take place. In this case, it is helpful
to think of the unwanted points as oriented curves on the cobordism, as in
the proof of part 1. By performing an isotopy, we can remove these curves
from the relevant region of the cobordism. Back on the level of movies, this
isotopy becomes a sequence of additional moves SM16–SM18. There are
other cases, where moves SM19–SM20 are needed as well.

Now assume that we have lifted the entire sequence. Then it remains
to show that M ′

m and M ′′ are related by signed movie moves. Being lifts
of the movie Mm, the movies M ′

m and M ′′ agree, except possibly for the
signed points. Moreover, since M ′

m and M ′′ represent equivalent framings,
the oriented curves c′m and c′′ coming from signed points in M ′

m and in M ′′

must be homologous. To complete the proof, verify that any two homologous
curves on a link cobordism can be related by a sequence of local modifica-
tions, which become the moves SM16–SM20 when seen on the level of movie
presentations. �

Let FM1–FM20 denote the framed movie moves, obtained by replacing
the signed points in SM1–SM20 by curls. Note that FM19 and FM20 are
identical with FM1 and FM2.
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Corollary 6 1. Every framed link cobordism has a framed movie presenta-
tion. 2. Two framed movies present isotopic framed link cobordisms if and
only if there is a sequence of framed movie moves FM1–FM18 which takes
one movie to the other.





6 The colored Khovanov bracket

The colored Jones polynomial is the Reshetikhin–Turaev invariant [RT] for
oriented framed links whose components are colored by irreducible repre-
sentations of Uq(sl(2)). If all components are colored by the fundamental
representation V1, the colored Jones polynomial specializes to the ordinary
Jones polynomial. The colored Jones polynomial plays an important role in
the definition of the sl(2) quantum invariant for 3–manifolds and is conjec-
turally related to the hyperbolic volume of the knot complement.

Khovanov [Kh3] proposed two homology theories which have the colored
Jones polynomial as the Euler characteristic.

In this chapter, we focus on Khovanov’s first theory, for the non–reduced
colored Jones polynomial. We introduce a generalization of Khovanov’s the-
ory, which we call the colored Khovanov bracket. We show that this theory
is well–defined over Z. Further, we introduce modifications of the colored
Khovanov bracket, and study conditions under which colored framed link
cobordisms induce chain transformations between our modified colored Kho-
vanov brackets.

6.1 Colored Jones polynomial

Let n = (n1, . . . , nl) be a finite sequence of non–negative integers. Let (L,n)
denote an oriented framed l–component link L whose ni–th component is
colored by the (ni+1)–dimensional irreducible representation Vni

of quantum
sl(2). Given a sequence m = (m1, . . . , ml) of non–negative integers, we
denote by Lm the m–cable of L. When forming the mi–cable of a component,
we orient the strands by alternating the original and the opposite direction
(starting with the original direction), so that neighbored strands are always
oppositely oriented. The colored Jones polynomial J(L,n) of the link L can
be expressed in terms of the Jones polynomial of its cables:

J(L,n) =

⌊n/2⌋
∑

k=0

(−1)|k|
(

n− k
k

)

J(Ln−2k) (6.1)

61
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where |k| =
∑

i ki and

(

n− k
k

)

=

l
∏

i=1

(

ni − ki

ki

)

.

In (6.1) the sum ranges over all k = (k1, . . . , kl) such that 0 ≤ ki ≤ ⌊ni/2⌋ for
all i. Formula (6.1) is a consequence of the following relation, which holds in
the representation ring of Uq(sl(2)) (for generic q), and which can be proved
inductively using Vn ⊗ V1

∼= Vn+1 ⊕ Vn−1:

Vn =

⌊n/2⌋
∑

k=0

(−1)k

(

n− k
k

)

V
⊗(n−2k)
1 .

Note that for n = (1, . . . , 1), we have J(L,n) = J(L).

6.1.1 Graph Γn. The binomial coefficient

(

n− k
k

)

equals the number

of ways to select k pairs of neighbors from n dots placed on a vertical line,

such that each dot appears in at most one pair. Analogously,

(

n− k
k

)

is

the number of ways to select k pairs of neighbors on l lines. We call such a
selection of k pairs a k–pairing. Given a k–pairing s, we denote by Ds the
cable diagram containing only components corresponding to unpaired dots.
Hence Ds is isotopic to Dn−2k.

+
+

+
+

+

+
+

+
+

+
+
+

−

+

+

+

−
−
−

−

−
−
−

+

−

Figure 6.1: The graph Γ4,3.
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Let Γn be the graph, whose vertices correspond to k–pairings. Two ver-
tices of Γn are connected by an edge if the corresponding pairings can be
related to each other by adding/removing one pair of neighboring points.
The “degree” of a vertex labeled by a k–pairing is equal |k|. The edges are
directed towards increasing of degrees (see Figure 6.1).

6.2 Colored Khovanov bracket

Let D be a diagram of an oriented framed link L (framed by the blackboard
framing) and let n = (n1, . . . , nl) be a coloring of the components of L by
non–negative integers. To (D,n) we associate a complex Kh(D,n) in the
category Mat(gKob/h). The construction goes as follows:

At each vertex of the graph Γn labeled by a k–pairing s we put the
complex Kh(Ds) defined as in (1.10), but viewed as an object of the homotopy
category gKob/h. With an edge e of Γn connecting a k–pairing s to a k′–

pairing s′, we associate a morphism Ae : Kh(Ds) → Kh(Ds
′

) in the category
gKob/h, as follows. Let C and C ′ denote the two neighbored strands of
the cable Ls which form a pair in s′ but not in s. Consider a standard
annulus glued between C and C ′ (i.e. such that C and C ′ are its boundary
components, see [Kh3]). Assume that Ls is embedded in R3×[0, 1] as Ls×{0},
and that the interior of the annulus is pushed into the interior of R3 × [0, 1].
Let Se denote the link cobordism from Ls to Ls′ which is given by the annulus
on C and C ′ and by the identity cobordism on all other strands of Ls. By
Section 1.4, Se induces a morphism Kh(Se) : Kh(Ds) → Kh(Ds

′

) in Kob/h,
which is well–defined up to sign. Define Ae := Kh(Se) to be this morphism.
Note that Ae is graded of Jones degree zero because the Euler characteristic
of an annulus is zero.

The sign of Ae depends on the choice of the movie presentation for the
annulus, but for any choice of movie presentations, the squares of Γn commute
up to sign, because cobordisms given by gluing of annuli in a different order
are isotopic. We call a choice of signs for the morphisms Ae satisfactory if
all squares anticommute.

Given a satisfactory choice of signs, we define a chain complex Kh(D,n)
in the category Mat(gKob/h) as follows. The k–th “chain space” is given by

Kh(D,n)k :=
⊕

Kh(Ds) ∈ Ob(Mat(gKob/h))

where the sum ranges over all k–pairings s with |k| = k. The k–th differential
dk
n

: Kh(D,n)k → Kh(D,n)k+1 is given by (dk
n
)s′,s := Ae whenever s and s′

are connected by an edge e, and (dk
n
)s′,s := 0 otherwise (here s denotes a
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k–pairing with |k| = k, and s′ denotes a k′–pairing with |k′| = k + 1). Since
all squares of Γn anticommute, we get dk+1

n
◦ dk

n
= 0.

Lemma 15 There exists a satisfactory choice of signs making all squares of
Γn anticommute.

For the proof of Lemma 15, we need the following auxiliary observation.

Claim. Let e1, e2, . . . , em be a sequence of oriented edges in Γn, such that
the starting point ei+1 agrees with the endpoint of ei. Then the composition
A := Aem

◦ . . . ◦ Ae2
◦ Ae1

is non–zero in gKob/h. More generally, N times
A is non–zero for any integer N ∈ Z, N 6= 0. In particular, A is not equal
to its negative.

Proof of the claim. We only prove the first statement (i.e. that A 6= 0),
but the more general statement follows in exactly the same way.

Let us start with the case where D is the diagram of a knot colored
by n = 2. In this case, Γn has a single edge e, and we have to show that
Ae 6= 0. Recall that Ae is given by an embedded annulus in R3×[0, 1]. Let Āe

denote the chain transformation obtained by turning Ae upside–down (i.e. by
reflecting Ae along R3×{1/2} ⊂ R3×[0, 1]). Then Āe◦Ae : Kh(∅) → Kh(∅) is
induced by an embedded torus, which is isotopic in R4 to a trivially embedded
torus. Using the (T) relation, we get Āe ◦ Ae = ±2 Id, where Id denotes the
identity morphism of Kh(∅), and hence Ae 6= 0 5.

Similarly, if D is a diagram of a knot colored by n > 2, we can pre- and
postcompose Aem

◦ . . . ◦ Ae2
◦ Ae1

with suitable cobordisms, in such a way
that the result is either isotopic to a trivially embedded torus in R4 or to the
identity cobordism of the knot. In both cases we get Aem

◦ . . .◦Ae2
◦Ae1

6= 0.

Finally, if D represents a link with more than one component, we can
apply the above argument to the different components of the link individually.
If necessary, we can use the (N) relation to unlink the resulting embedded
tori from identity cobordisms. Details are left to the reader. �

Proof of Lemma 15. Let us first show that we can make all squares
commute. We define a 1–cochain ζ ∈ C1(Γn,Z/2Z) as follows. For any
square S ⊂ Γn, we put ζ(S) = 0 if S is commutative, and ζ(S) = 1 if S is
anticommmutative. Note that ζ is well–defined because of the above claim.
Using that Z/2Z is a field, we can extend ζ to a 1–cochain. Now it is easy to
see that all squares of Γn become commutative if we replace Ae by (−1)ζ(e)Ae.

5 Here we use the following fact: assume D is any link diagram and N any non–zero
integer. Then N times the identity morphism of Kh(D) is non–zero in gKob/h. To see
this, use e.g. that H′(D) 6= 0 (see Chapter 2).
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Once all squares commute, we can make them anticommute as follows.
For each edge e, connecting two pairings s and s′, we multiply the morphism
Ae by (−1)(s,s′), where (s, s′) denotes the number of pairs in s, which lie either
on the same vertical line as unique pair in s′\s and above that pair, or on
one of the vertical lines to the right of that pair (see Figure 6.1). �

Lemma 16 Different satisfactory choices of signs lead to isomorphic com-
plexes. Moreover, for any two satisfactory choices of signs there is a preferred
isomorphism between the corresponding complexes.

Proof. Consider two choices of signs, given by two 1–cochains ζ and ζ ′ as
in the proof of Lemma 15. If both choices of signs are satisfactory, we must
have ζ(S) = ζ ′(S) for all squares S ⊂ Γn. Since the space Z1(Γn,Z/2Z) of 1–
cycles of Γn is generated by squares, ζ and ζ ′ must coincide on Z1(Γn,Z/2Z),
and therefore ζ− ζ ′ = δγ for a 0–chain γ ∈ C0(Γn,Z/2Z). Now note that for
every edge e of Γn with boundary s− s′, we have ζ(e)− ζ ′(e) = γ(s)− γ(s′).
Therefore, the morphisms (−1)γ(s) IdKh(Ds) define an isomorphism between
the complex associated to ζ and the complex associated to ζ ′.

To see that there is a preferred choice for the isomorphism between the
ζ– and the ζ ′–complex, observe that any two 0–cochains γ as above must
differ by a 0–cocycle. Since the space of 0–cocycles of Γn is isomorphic to
Z/2Z, there are only two possible choices for γ. The preferred γ is the one
which maps the left–most vertex of Γn to 0. �

Alternatively, Lemma 16 can be proved by constructing the preferred iso-
morphism explicitly, by defining it to be the identity on the left–most vertex
of Γn and then extending it arrow by arrow to the right.

Lemmas 15 and 16 show that Kh(D,n) is well–defined up to canonical
isomorphism. We call Kh(D,n) the colored Khovanov bracket of (D,n).

Remark. By definition, the colored Khovanov bracket is an element of
Kom(Mat(Kom/h(gCob

3
•/l))), and hence a “complex of complexes”. However

it is not a bicomplex, because the Ae are just homotopy classes of chain
transformations (rather than honest chain transformations). We do not know
whether it is possible to lift Kh(D,n) to a bicomplex by choosing suitable
representatives for the homotopy classes Ae.

Theorem 14 The isomorphism class of Kh(D,n) is an invariant of the col-
ored oriented framed link (L,n).

Proof. If (D,n) and (D′,n) represent isotopic colored framed links (L,n)
and (L′,n), then the cables Ls and L′s are isotopic as well. In particular, the
complexes Kh(Ds) and Kh(D′s) are isomorphic as objects of gKob/h. This
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shows that Kh(D,n) and Kh(D′,n) are isomorphic on the level of objects.
The isotopy between Ls and L′s extends to an isotopy between the annuli ap-
pearing in the definition of the differentials. Hence Theorem 3 and Lemma 16
imply that Kh(D,n) and Kh(D′,n) are isomorphic as complexes. �

Let C(D,n) := FKh(Kh(D,n)) and C′(D,n) := FLee(Kh(D,n)). The
total graded Euler characteristic of C(D,n) is defined by

χ̃q(C(D,n)) :=
∑

k,i,j

(−1)k+iqj dimQ(Ck,i,j(D,n) ⊗ Q)

where k,i and j respectively refer to the homological grading of C(D,n), the
homological grading of the complexes C(Dn−2k), and the Jones grading of
the complexes C(Dn−2k).

Theorem 15 The total graded Euler characteristic of C(D,n) is equal to the
colored Jones polynomial J(L,n).

Proof. We have

χ̃q(C(D,n)) =
∑

k,i,j

(−1)k+iqj dimQ(Ck,i,j(D,n) ⊗ Q)

=
∑

k

(−1)k
∑

|k|=k

∑

s∈Ik

χq(C(Dn−2k))

=

⌊n/2⌋
∑

k=0

(−1)|k|
(

n− k
k

)

χq(C(Dn−2k))

where in the second line Ik denotes the set of all k–pairings. Taking into
account that χq(C(Dn−2k)) = J(Ln−2k) and comparing with (6.1) we get the
result. �

6.3 Modified colored Khovanov bracket

In the following, we assume that the additional relation = 0 is imposed

on the category Cob3•/l.

6.3.1 Modified differentials. Let us generalize the definition of Kh(D,n)
as follows. As before, we put Kh(Dn−2k) at vertices of Γn labeled by k–
pairings. But we modify the morphisms associated to edges of Γn. With an
edge e connecting k– and k′–pairings we associate the morphism

A′
e := αAe + βA•

e ,
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where α, β ∈ Z are fixed integers integers and where A•
e := Ae ◦ Xe. The

morphism Xe will be defined below. Note that the sign of Ae depends on the
choice of a movie presentation for the annulus, but the relative sign between
Ae and A•

e is independent of any choice. Given a satisfactory choice of signs,
the result is a chain complex which we denote Kh(D,n)α,β. Observe that
Kh(D,n)1,0 = Kh(D,n). The morphism Xe is graded of Jones degree −2.
Hence if β is non–zero, then the morphisms A′

e do not respect the Jones
degree anymore.

6.3.2 The morphism Xe. Xe is defined as follows. Let Ci and Ci+1 be
the two strands of the cable Dn−2k which are annihilated by Ae, i.e. which
do not appear in Dn−2k′

anymore. For a point P on Ci, let XP denote the
endomorphism of Kh(Dn−2k) induced “multiplying” with a dot at the point
P (i.e. XP is induced by the identity cobordism of Dn−2k, decorated by a
single dot, located near the point P ). According to Lemma 5 (Section 1.4),
XP changes its sign when P slides across a crossing. To fix the sign, we
checkerboard color the regions of Dn−2k, such that the unbounded region
is colored white, and we define σ(P ) := +1 or σ(P ) := −1, depending on
whether the region between Ci and Ci+1, which lies next to P , is black or
white. Now the product σ(P )XP is independent of the choice of P . We
define Xe := σ(P )XP . If Ci and Ci+1 belong to the cable of a component K
of the link represented by D, we will also use the notation X(K, i) for Xe.

6.4 Towards functoriality

Let Cob4f be the category of colored framed movie presentations. The objects
are diagrams of colored links and the morphisms movie presentations of col-
ored framed links, i.e. sequences of colored link diagrams, where between
two consecutive diagrams one of the following transformations occurs: FR1,
R2 or R3, or a saddle, a cap or a cup. Note that here we need to distinguish
between two saddle moves: a “splitting” saddle which splits one colored com-
ponent into two of the same color, and a “merging” saddle which merges two
components of the same color into one component.

We are interested in a construction of a functor

Khα,β : Cob4f → Kom(Mat(Kob/h)) .

Given two colored link diagrams (D,n) and (D0,n0) which are related by a
Reidemeister move, a cap, a cup or a saddle, we would like to associate a
chain transformation

F : Khα,β(D,n) −→ Khα,β(D0,n0) .
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We can do this by specifiying “matrix elements”

Fs0,s : Khα,β(Ds) −→ Khα,β(Ds0

0 )

for all pairings s of n and all pairings s0 of n0. For Reidemeister moves, we
can take the matrix elements implicit in the proof of Theorem 14. Subsec-
tions 6.4.1, 6.4.2 and 6.4.3 are devoted to the definition of matrix elements
corresponding to cap, cup and saddles.

Throughout this section, we assume the additional relation = 0.
Moreover, we assume that 2 is made invertible, i.e. that the morphism sets
of Cob3•/l are tensored by Z[1/2].

6.4.1 Cup and cap. Let (D,n) and (D0,n0) be two colored link diagrams
which are related by a cup cobordism. Assume that D0 is the disjoint union
of D with a trivial component K = ©, and that n0 restricts to n on D and
to an arbitrary color n on K. Given a pairing s of n and a pairing s0 of n0,
we define a morphism

ιs0,s : Kh(Ds) −→ Kh(Ds0

0 )

as follows: ιs0,s is non–zero only if the restriction of s0 to K is the empty
pairing (no pairs) and if s0 agrees with s on all other components. In this
case, we put ιs,s0 := G ◦ C, where C : Kh(Ds) → Kh(Ds0) is the morphism
induced by a union of n cups whose boundaries are the n strands of the
n–cable of K, and G is the endomorphism of Kh(Ds0) defined by

G :=

n
∑

j=1

Yj ◦ Zj .

Here, Yj is the composition of all morphisms (α Id−βX(K, i))/2 for 1 ≤
i ≤ j, and Zj is the composition of all morphisms (α Id +βX(K, i))/2 for
j < i ≤ n. α and β are the same integers as in the definition of the modified
differentials.

Now let (D,n) and (D0,n0) be two colored link diagrams related by a
cap cobordism. Assume that D is the disjoint union of D0 with a trivial
component K, and that n restricts to n0 on D0 and to an arbitrary color n
on K. We define

ǫs0,s : Kh(Ds) −→ Kh(Ds0

0 )

as follows: ǫs0,s is non–zero only if the restriction of s to K is the empty
pairing and if s agrees with s0 on all other components. In this case, we
define ǫs0,s := C̄ ◦ G where G is the endomorphism of Kh(Ds) defined as
above, and C̄ is the morphism induced by n caps whose boundaries are the
n strands of the n–cable of K.
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6.4.2 Merging saddle. Let (D,n) and (D0,n0) be two colored link di-
agrams which are related by a saddle merging two components K1 and K2

of D into a single component K of D0. Assume that n and n0 restrict to a
color n on the components K1, K2 and K, and that they are identical on all
other components.

Let s be a pairing of the n–cable of D, and let s1 and s2 denote its
restrictions to K1 and K2, respectively. Let s1 ∪ s2 denote the union of s1

and s2, i.e. the pairing of n which consists of all pairs which are contained in
either s1 or in s2 or in both. Given γ, δ ∈ Z and a pairing s0 of the n0–cable
of D0, we define a morphism

mγ,δ
s0,s : Kh(Ds) −→ Kh(Ds0)

as follows. mγ,δ
s0,s is zero unless the following is satisfied:

• s1 and s2 have no common dot (meaning that there is no dot which
belongs to a pair both in s1 and in s2),

• s0 is the pairing which restricts to s1 ∪ s2 on K and which agrees with
s on all other components.

If the above conditions are satisfied, we put mγ,δ
s0,s := F3◦F2◦F1, where F1, F2

and F3 are defined as follows.

• F1 is the endomorphism of Kh(Ds) defined by F1 := X1 ◦ X2, where
X1 is the composition of all (γ Id +δX(K1, i))/2 such that the dots
numbered i and i + 1 form a pair in s2, and X2 is the composition of
all (γ Id +δX(K2, i))/2 such that the dots numbered i and i + 1 form
a pair in s1.

• Let s′ be the pairing of n which restricts to s1 ∪ s2 on both K1 and
K2 and which agrees with the pairing s on all other components of D.
F2 : Kh(Ds) → Kh(Ds

′

) is the morphism induced by attaching annuli
to the strands of Ks1

1 and Ks2

2 according to the following rule. If the
two dots numbered i and i+ 1 form a pair in s2, we attach an annulus
to the strands numbered i and i+ 1 in Ks1

1 . Similarly, if the two dots
numbered i and i + 1 form a pair in s1, we attach an annulus to the
strands numbered i and i+ 1 in Ks2

2 .

• F3 : Kh(Ds
′

) → Kh(Ds0) is the morphism obtained by merging each
strand of Ks1∪s2

1 with the corresponding strand of Ks1∪s2

2 by a saddle
cobordism.
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The above construction mimics a construction of Khovanov [Kh3]. Kho-
vanov’s map ψ corresponds to our morphism m0,2

s0,s. Note that m0,δ
s0,s is graded

of Jones degree deg(m0,δ
s0,s) = −n, where n is the color of the components

K1,K2 and K. We denote by mγ,δ the collection of all morphisms mγ,δ
s0,s.

6.4.3 Splitting saddle. Suppose the diagrams (D,n) and (D0,n0) are
related by a saddle which splits a component K of D into two components
K1 and K2 of D0. Assume that the colorings n and n0 are consistent with
each other, in the obvious sense. Consider a pairing s of the n–cable of D
which restricts to a k–pairing s on K. Given γ, δ ∈ Z and a pairing s0 of the
n0–cable of D0, we define a morphism

∆γ,δ
s0,s : Kh(Ds) −→ Kh(Ds0

0 )

as follows. ∆γ,δ
s0,s is zero unless s0 has the following properties:

• the restrictions s1 and s2 of s0 to K1 and K2 have no common dot,

• the union of s1 and s2 is equal to s,

• s0 agrees with s on all components of D0 other than K1 and K2.

If s0 satisfies the above properties, we define ∆γ,δ
s0,s := 2kF̄1 ◦ F̄2 ◦ F̄3, where

F̄1, F̄2 and F̄3 are the morphisms obtained by turning the morphisms F1, F2

and F3 of Subsection 6.4.2 upside down (i.e. by reflecting the link cobordisms
appearing in the definition of F1, F2 and F3 along the hyperplane R3×{1/2}).

6.4.4 Criteria for chain transformations. In this subsection, we give
criteria under which the matrix elements mγ,δ

s0,s and ∆γ,δ
s0,s induce chain trans-

formations. To simplify the notation, we will drop the superscripts γ, δ in
mγ,δ and ∆γ,δ and just write m and ∆.

Let us first consider the case of merging saddles. Let (D,n) and (D0,n0)
be two colored link diagrams which are related by a merging saddle, and let d
and d0 denote the differentials of Kh(D,n)α,β and Kh(D0,n0)α,β, respectively.
Let s be a pairing of n, and let s0 be the pairing of n0 which restricts to s1∪s2

on K and which agrees with s on all other components (here, s1, s2 and K
are defined as in Subsection 6.4.3). For a pairing s′0 of n0, we wish to compare
the matrix elements (d0 ◦ m)s′

0
,s and (m ◦ d)s′

0
,s. Assume that at least one

of these matrix elements is non–zero. This is only possible if s1 and s2 have
no common dot. Moreover, s′0 must contain a unique pair p which does not
appear in s0, and otherwise be identical with s0. We assume that p lies on
K (for otherwise (d0 ◦m)s′

0
,s = ±(m ◦ d0)s′

0
,s is trivially satisfied). Then we

are in the situation of (6.2), where we have left away all dots corresponding
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to strands on which (d0 ◦ m)s′
0
,s and (m ◦ d0)s′

0
,s agree trivially, and where

d′ := ds′,s, d
′′ := ds′′,s and d′0 := (d0)s′

0
,s0. Note that p is the pair in the upper

right corner.

d’’

d’

d’0

m

m

s’ , s’’

0
m

s

0

0 0s’

s s’

s’’

s  , s s’ , s’0

(6.2)

Lemma 17 Assume that d′0 ◦ ms0,s = ±(ms′
0
,s′ ◦ d

′ + ms′
0
,s′′ ◦ d

′′) for all
diagrams as in (6.2). Then there is a 0–cochain γ ∈ C0(Γn,Z/2Z) such
that the morphisms Fs0,s := (−1)γ(s)ms0,s determine a chain transformation
between Kh(D,n)α,β and Kh(D0,n0)α,β, i.e. such that d0 ◦ F = F ◦ d.

The proof of Lemma 17 is quite technical, so we skip it here and instead refer
to [BW].

Now assume that (D,n) and (D0,n0) are related by a splitting saddle.
Let s be a pairing of the n–cable of D and let s′0 be a pairing of the n0–cable
of D0, such that at least one of the morphisms (d0 ◦ ∆)s′

0
,s and (∆ ◦ d)s′

0
,s

is non–zero. Let K denote the component of D which is involved in the
saddle and let s be the restriction of s to K. Similarly, let K1 and K2 be the
components of D0 which are involved in the saddle and let s′1 and s′2 denote
the restrictions of s′0 to K1 and K2. Then every pair of s must also appear in
the union s′1 ∪ s

′
2. If s′1 and s′2 have a common pair, we are in the situation

of (6.3).

d’0

∆

0

0d’’

’

s’

s

0

∆’’
(6.3)
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Now assume that s′1 and s′2 have no common pair. Let s1 and s2 denote
the intersections s1 := s ∩ s′1 and s2 := s ∩ s′2. Let s0 denote the pairing of
the n0–cable of D0 which restricts to s1 and s2 on the components K1 and
K2 and which agrees with s on all other components of D0. Then every pair
of s0 must also be a pair of s′0. Moreover, s′0 has to contain a unique pair
p which is not contained in s0. We assume that p belongs to K1 or K2 (for
otherwise (d0 ◦∆)s′

0
,s = ±(∆◦d)s′

0
,s is trivially satisfied). If p is disjoint from

all pairs of s1 ∪ s2, we are in the situation of (6.4), where p is the pair in the
upper right corner.

d

0d

∆ ∆s  ,s0 s’  ,s’0
∆ ∆

d0

d

s  ,s0 s’  ,s’0 (6.4)

It is also possible that p has a common dot with a pair of s1 ∪ s2. Examples
of this case are shown in (6.5).

d0 d0

∆ ∆s  ,s0 s  ,s0

0 0s

s0 0s’

(6.5)

Lemma 18 Assume that the squares of (6.4) commute, up to sign, and
assume that d0 ◦ ∆s0,s = 0 for all squares as in (6.5). Then there is a 0–
cochain γ ∈ C0(Γn0

,Z/2Z) such that the morphisms (−1)γ(s0)∆s0,s determine
a chain transformation between Kh(D,n)α,β and Kh(D0,n0)α,β.

In Lemma 18, no assumption has to be made about the diagrams of (6.3).
Indeed, if the squares of (6.4) commute, then the anticommutativity of the
squares of Γn0

implies d′0 ◦ ∆′ + d′′0 ◦ ∆′ = 0 for all diagrams as in (6.3).
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6.4.5 Chain transformations.

Theorem 16 For α = β = 1, the maps FLee(m
1,1
s0,s) and FLee(∆

1,1
s0,s) induce

chain transformations.

Sketch of the proof. We have to show that for α = β = 1, the morphisms
FLee(m

1,1
s0,s) and FLee(∆

1,1
s0,s) satisfy the conditions of Lemmas 17 and 18.

We start with the proof of FLee(d0 ◦ ∆1,1
s0,s) = 0 for the left square of

(6.5). Assume that the three dots in the lower left corner of the square are
numbered from bottom to top from i to i+ 2. Moreover, assume that these
dots lie on a component K of D, and that the saddle cobordism splits K into
components K1 and K2. (In the left square of (6.5), K1 and K2 correspond to
the left and the right column of dots in the upper left corner). Let s2 denote
the restriction of s0 to K2, and let Ci, Ci+1 and Ci+2 denote the strands of
Ks2

2 corresponding to the dots i, i+1 and i+2, respectively. For α = β = 1,
d0 is given by

Ai+1 ◦ (Id +X(K2, i+ 1))

where Ai+1 is induced by an annulus attached to the components Ci+1 and
Ci+2 of Ks2

2 . Similarly, ∆1,1
s0,s is given by some saddle cobordisms, composed

with

(Id +X(K2, i)) ◦ Āi

where Āi is induced by an annulus attached to Ci and Ci+1. We can replace
X(K2, i) by −X(K2, i + 1) because we can move the point P used in the
definition of X(K2, i) = σ(P )XP across the annulus. The minus sign appears
because of the definition of σ(P ). Summarizing, we see that d0 ◦∆1,1

s0,s factors
through

(Id +X(K2, i+ 1))) ◦ (Id−X(K2, i+ 1)) = Id−X(K2, i+ 1)2 .

Now recall that in Lee’s Frobenius algebra, we have the relation X2 = 1.
Hence FLee(Id−X(K2, i+1)2) = 0 and therefore FLee(d0 ◦∆1,1

s0,s) = 0. So the
left square of (6.5) commutes. The proof for the right square is analogous.

To show that the squares of (6.4) commute up to sign, one has to apply
isotopies, the (N) relation and the defining relations for Lee’s functor to the
cobordisms corresponding to (d0 ◦ ∆1,1)s′

0
,s, (∆1,1 ◦ d)s′

0
,s. Similarly, to prove

that the assumption of Lemma 17 is satisfied, on has to apply the same
relations to (d0 ◦m

1,1)s′
0
,s, and (m1,1 ◦ d)s′

0
,s. �

Theorem 17 For α = β = 1, the maps FLee(ǫs0,s) and FLee(ιs0,s) associated
to caps and cups induce chain transformations.
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Proof. The case of caps is easy, so we only discuss the case of cups. Let
D and D0 be two link diagrams which are related by a cup cobordism, i.e.
D0 = D ⊔K for a trivial component K.

Let d and d0 denote the differentials of Kh(D,n)α,β and Kh(D0,n0)α,β,
respectively. We write d0 as d0 = d′0 +d′′0, where d′0 denotes the sum of all A′

e

which contract a pair on K, and d′′0 denotes the sum of all A′
e which contract

a pair on one of the other components of D0. Then d′′0 ◦ ι = ι ◦ d, so we must
show that FLee(d

′
0 ◦ ι) = 0.

For α = β = 1, d′0 is a sum of morphisms

A′
i = Ai ◦ (Id +X(K, i)) = Ai ◦ (Id−X(K, i+ 1)) ,

where Ai is induced by an annulus glued to the strands i and i + 1 of the
cable of K. ι is equal to G ◦ C, where G =

∑n
j=0 Yj ◦ Zj. Using X2 = 1 and

the definitions of Yj and Zj with α = β = 1, we get

FLee((Id +X(K, i)) ◦ Yj) = 0

for i ≤ j, and
FLee((Id−X(K, i+ 1)) ◦ Zj) = 0

for i ≥ j. Hence FLee(A
′
i◦Yj◦Zj) = 0 for all i, j, and therefore FLee(d

′
0◦ι) = 0.

�

Assume we can make the definition of the chain transformations in The-
orems 16 and 17 canonical, i.e. independent of any sign choices. Then
FLee(Kh1,1(D,n)) extends to a well–defined functor FLee ◦ Kh1,1 : Cob4f →

Kom(Kom/h(Z- mod)). Let Cob4f/i denote the quotient of Cob4f by framed
movie moves. We expect

Conjecture. The functor FLee ◦ Kh1,1 descends to a functor FLee ◦ Kh1,1 :
Cob4f/i → Kom/±h(Kom/h(Z- mod)).

In [BW], we also defined chain transformations for FKh(Kh(D,n)0,1):

Theorem 18 For α = 0, β = 1, the maps FKh(m
0,1
s0,s), FKh(∆

0,1
s0,s), FKh(ǫs0,s)

and FKh(ιs0,s) induce chain transformations.

The proof of Theorem 18 is analogous to the proofs of Theorems 16 and 17.

Remark. We do not know how to extend the original colored Khovanov
bracket Kh(D,n) = Kh(D,n)1,0 to a functor. For the original colored Kho-
vanov bracket, the morphisms m0,2

s0,s induce chain transformations (cf. [Kh3]),
but there is no choice of γ, δ for which the ∆γ,δ

s0,s induce chain transformations.



Bibliography

[AP] M. Asaeda and J. Przytycki, Khovanov homology: torsion and thick-
ness, arXiv:math.GT/0402402.

[B1] D. Bar–Natan, On Khovanov’s Categorification of the Jones poly-
nomial, Algebraic and Geometric Topology 2 (2002) 337–370,
arXiv:math.QA/0201043.

[B2] D. Bar–Natan, Khovanov’s homology for tangles and cobor-
disms, Geometry & Topology, vol. 9 (2005) 1443–1499, arXiv:
math.GT/0410495.

[B3] D. Bar–Natan, Fast Khovanov homology computations, arXiv:
math.GT/0606318.

[B4] D. Bar–Natan, Mutation Invariance of Khovanov Homology,
http://katlas.math.toronto.edu/drorbn/index.php?title=Mutation
Invariance of Khovanov Homology

[BM] D. Bar–Natan, S. Morrison, The Karoubi envelope and Lee’s degen-
eration of Khovanov homology, arXiv:math.GT/0606542.

[BW] A. Beliakova, S. Wehrli, Categorification of the colored Jones poly-
nomial and Rasmussen invariant of links, to appear in the Canadian
Math. J., arXiv:math.QA/0510382.

[CF] D. Cimasoni, V. Florens, Generalized Seifert surfaces and signature
of colored links, to appear in Trans. AMS, arXiv:math.GT/0505185.

[CK] A. Champanerkar, I. Kofman, Spanning trees and Khovanov homol-
ogy, arXiv:math.GT/0607510.

[Co] John H. Conway, An enumeration of knots and links and some of
their related properties, Computational problems in Abstract Alge-
bra, Pergamon Press, New York, 329-358, 1970.

75

http://lanl.arxiv.org/abs/math/0402402
http://lanl.arxiv.org/abs/math/0201043
http://lanl.arxiv.org/abs/math/0410495
http://lanl.arxiv.org/abs/math/0606318
http://katlas.math.toronto.edu/drorbn/index.php?title=Mutation_
http://lanl.arxiv.org/abs/math/0606542
http://lanl.arxiv.org/abs/math/0510382
http://lanl.arxiv.org/abs/math/0505185
http://lanl.arxiv.org/abs/math/0607510


76 BIBLIOGRAPHY

[CS] S. Carter, M. Saito, Reidemeister moves for surface isotopies and
their interpretation as moves to movies, J. Knot Theory Ramific. 2
(1993) 251–284

[Ja] M. Jacobsson, An invariant of link cobordisms from Khovanov ho-
mology, Algebr. Geom. Topol. 4 (2004) 1211–1251.

[Jo] V. Jones, A polynomial invariant for knots via von Neumann alge-
bras, Bull. Amer. Math. Soc., vol.12 (1985) no. 1, 103–111.

[Ka1] L. H. Kauffman, Formal Knot Theory, Mathematical Notes 30,
Princeton University Press (1983).

[Ka2] L. H. Kauffman, State models and the Jones polynomial, Topology
26 (1987) 395–407.

[Kaw] A. Kawauchi, A Survey of Knot Theory, Birkhäuser 1996.
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[OS1] P. Ozsváth and Z. Szabó, Knot Floer homology, genus bounds, and
mutation, arXiv:math.GT/0303225.
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