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MUTATION INVARIANCE OF KHOVANOV HOMOLOGY OVER F2

STEPHAN M. WEHRLI

Abstract. We prove that Khovanov homology and Lee homology with coefficients in
F2 = Z/2Z are invariant under component-preserving link mutations.

1. Introduction

Khovanov homology is a refinement of the Jones polynomial [Jon85] which was discovered
by Mikhail Khovanov [Kho00] in the year 1999, and which was subsequently generalized
through the work Eun Soo Lee [Lee02] and Dror Bar-Natan [BN05a]. In 2003, the author
[Weh03] discovered a series of examples of mutant links [Con70] with different (integer
coefficient) Khovanov homology. Despite this discovery, the question whether there are
mutant knots with different Khovanov homology remained open. In this paper, we partially
answer this question. We prove:

Theorem 1.1. The graded homotopy type of Kh(L) is invariant under component-preserving
link mutation.

In this theorem, Kh(L) stands for a variant of Bar-Natan’s formal Khovanov bracket
[BN05a], which generalizes both Khovanov homology with F2 coefficients and Lee homology
[Lee02] with F2 coefficients. To prove the theorem, we will employ an argument that was
outlined by Bar-Natan in 2005 [BN05b]. While Bar-Natan’s argument had some gaps, the
author realized that these gaps can be filled if one works over F2 coefficients. In 2007,
the author presented a complete proof of Theorem 1.1 at the ‘Knots in Washington XXIV’
conference in Washington D.C., and at the ‘Link homology and Categorification’ conference
in Kyoto [Weh07].

More recently, Jonathan Bloom [Blo09] discovered an alternative and completely inde-
pendent proof of mutation invariance. Bloom’s proof has the advantage that it works not
only over F2 coefficients, but rather extends to a proof showing that the odd version of the
integer coefficient Khovanov homology (defined as in [ORS07]) is invariant under arbitrary
link mutations. On the other hand, the proof given in this paper has the advantage that it
also implies that Lee homology with F2 coefficients is invariant under component-preserving
link mutation.

The paper is organized as follows. In Section 2, we show that every component-preserving
link mutation can be realized by a finite sequence of crossed z-mutations and isotopies. In
Section 3, we introduce the variant of the formal Khovanov bracket that we will use through-
out this paper. This variant takes values in a category whose morphisms are formal F2-linear
combinations of properly embedded 2-cobordisms, decorated by finitely many distinct dots,
and considered up to some relations. In Section 4, we discuss algebraic operations for ma-
nipulating the dots that appear in a decorated cobordism, and in Section 5, we use these
operations to prove that our variant of the formal Khovanov bracket is invariant under
crossed z-mutation.
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2. Conway mutation

Let U ⊂ R
2 be the closure of a domain in R

2, and let P ⊂ ∂U a finite subset of
∂U . A tangle above (U, P ) is a properly embedded compact 1-manifold T ⊂ U × R with
∂T = P × {0}. To represent a tangle above (U, P ), we use a plane diagram T ⊂ U
with ∂T = P . In the case where T is a plane diagram of a tangle T above the unit disk
U = D := {z ∈ C = R2 : |z| ≤ 1}, and P is the set P := {a, b, c, d} ⊂ ∂D where a, b, c, d
are the points exp(iπn/4) ∈ C = R2 for n = 1, 3, 5, 7 (in this order), then we denote by
Rx(T ), Ry(T ), Rz(T ) the plane diagrams of the tangles obtained by rotating T ⊂ D×R ⊂ R3

by 180◦ around the x-, y- and z-axis respectively.

T

b a

c d

T

b a

c d

T

b a

c d

Rx Ry Rz

Figure 1. Rotations Rx, Ry, Rz .

Let Dc := R2 \ Int(D) and P := {a, b, c, d}. If T is a tangle over (D, P ), and T ′ is a
tangle over (Dc, P ), then the union T ∪ T ′ is a link L = T ∪ T ′ ⊂ R2 × R = R3.

Definition 2.1. Two links L and L′ are called elementary Conway mutants of each other
[Con70] if there is a rotation R ∈ {Rx, Ry, Rz} and two tangle diagrams T ⊂ D and T ′ ⊂ Dc

with ∂T = ∂T ′ = P and such that T ∪ T ′ is a diagram for L and R(T ) ∪ T ′ is a diagram
for L′. Depending on whether R = Rx, Ry or Rz , we say that the diagrams T ∪ T ′ and
R(T ) ∪ T ′ are related by x-, y- or z-mutation.

Remark 2.2. If L and L′ are oriented, then we require that T ∪T ′ is a diagram for L, and
R(T )∪T ′ or R(−T )∪T ′ (whichever of the two is oriented consistently) is a diagram for L′.

Definition 2.3. We say that T ∪T ′ and R(T )∪T ′ are related by a crossed mutation if the
tangle corresponding to T ′ ⊂ Dc has crossed connectivity, i.e. if one of its arcs has endpoints
at {a} × {0} and {c} × {0}, and the other arc has endpoints at {b} × {0} and {d} × {0}.

Definition 2.4. We say that L = T ∪ T ′ and L′ = R(T ) ∪ T ′ are related by a component-
preserving mutation if the union R(α) ∪ α′ is a connected component of L′ if and only if
the union α ∪ α′ is a connected component of L, for any two arc components α ⊂ T and
α′ ⊂ T ′.

The following lemma allows us to reduce Theorem 1.1 to Proposition 2.6 below.

Lemma 2.5. Let L and L′ be two links that are related by component-preserving mutation,
and let D be a planar diagram of L and D′ a planar diagram of L′. Then D can be
transformed into D′ by a sequence of Reidemeister moves and crossed z-mutations.

Proof. It is easy to see that the three different types of mutation (x-, y- and z-mutation)
are topologically equivalent. Indeed, Figure 2 shows how a y-mutation can be obtained by
performing a Reidemeister move of type II, followed by a z-mutation, followed by an isotopy
in R

3, and analogously, an x-mutation can be reduced to a z-mutation. Thus, we can assume



MUTATION INVARIANCE OF KHOVANOV HOMOLOGY OVER F2 3
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TT
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dc
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c d

yR (T)

Figure 2. Decomposing a y-mutation into three steps: (1) a Reidemeister
move of type II; (2) a z-mutation along the dashed circle; (3) an isotopy
in R3 that rotates T around the x-axis and thus untwists the crossings on
either side of T .

without loss of generality that D and D′ are related by a z-mutation, i.e. D = T ∪ T ′ and
D′ = Rz(T ) ∪ T ′ for suitable tangle diagrams T ⊂ D and T ′ ⊂ Dc. If T ′ has crossed
connectivity, then there is nothing to prove, and if T has crossed connectivity, then we can
interchange the roles of T and T ′ by applying a planar isotopy which moves T ′ into D and
T out of D. Thus, we only need to care about the case where neither T nor T ′ has crossed
connectivity. In this case, either T or T ′ must have horizontal connectivity (i.e., represent
a tangle that contains an arc with endpoints at {a}× {0} and {b}× {0}), for otherwise the
mutation would not be component-preserving. After interchanging the roles of T and T ′

if necessary, we can assume that T ′ has horizontal connectivity. But then the z-mutation
in Step (2) of Figure is a crossed z-mutation, and hence Figure shows that D = T ∪ T ′

can be transformed into Ry(T ) ∪ T ′ by Reidemeister moves and a crossed z-mutation. A
similar argument shows Ry(T )∪T ′ can be transformed into Ry(T )∪Rx(T ′) by Reidemeister
moves and a crossed z-mutation, and since Rz = Rx ◦ Ry, the latter diagram is isotopic to
Rx (Ry(T ) ∪ Rx(T ′)) = Rz(T ) ∪ T ′ = D′, whence the proof is complete. �

The following proposition is the main result of this paper. Its proof will be given in
Section 5.

Proposition 2.6. If two link diagrams are related by a crossed z-mutation, then their formal
Khovanov brackets are isomorphic.

3. Bar-Natan’s formal Khovanov bracket

In this section, we briefly review the definition of Bar-Natan’s formal Khovanov bracket.
For more details, we refer the reader to [BN05a].

3.1. Chain complexes and chain maps in pre-additive categories. Let C be a pre-
additive category. To C, one can associate an additive category Mat(C), called the matrix
extension or additive closure of C and defined as follows. An object of Mat(C) is a finite tu-
ple (O1, . . . , Om) of objects Oi ∈ C (where m can be any non-negative integer). A morphism
F : (O1, . . . , On) → (O′

1, . . . , O
′
m) is a matrix F = (Fij) of morphisms Fij ∈ HomC(Oj , O

′
i).

The composition of two morphisms F = (Fik) and G = (Gkl) is modelled on ordinary
matrix multiplication: (F ◦ G)ij :=

∑
k Fik ◦ Gkj . Direct sums are defined by concatena-

tion: (O1, . . . , On) ⊕ (O′
1, . . . , O

′
m) := (O1, . . . , On, O′

1, . . . , O
′
m). By identifying an object

O ∈ C with the 1-tuple (O) ∈ Mat(C), one can embed C into Mat(C) as a full subcate-
gory. In particular, one can write every object (O1, . . . , Om) ∈ Mat(C) as a direct sum
(O1, . . . , Om) =

⊕m
i=1 Oi.
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Definition 3.1. A bounded chain complex in C is a pair C = (C∗, d∗), where C∗ = {Ci}i∈Z

is a sequence of objects Ci ∈ Mat(C), such that Ci = 0 for |i| ≫ 0, and d∗ = {di}i∈Z is
sequence of morphisms di : Ci → Ci+1 such that di+1 ◦ di = 0 for all i ∈ Z.

Definition 3.2. A chain map F : (C∗
1 , d∗1) → (C∗

2 , d2∗) is a sequence of morphisms F i : Ci
1 →

Ci
2 such that F i+1 ◦ di

1 = di
2 ◦ F i for all i ∈ Z.

We denote by Kom(C) the category whose objects are bounded chain complexes in C and
whose morphisms are chain maps.

Remark 3.3. If F : C1 → C2 is an additive functor between two pre-additive categories
C1 and C2, then F can be extended to an additive functor F : Mat(C1) → Mat(C2)) by
setting F((O1, . . . , Om)) := (F(O1), . . . , F(Om)) and F(F ) := (F(Fij)) for every object
(O1, . . . , Om) ∈ Mat(C1) and every morphism F = (Fij). Similarly, F can be extended
to an additive functor F : Kom(C1) → Kom(C2) by setting F((C∗, d∗))i := (F(Ci), F(di))
and F(F ∗)i := F(F i). In this paper, we make no distinction between the notation for the
functor F : C1 → C2 itself, and the notation for the extensions of F.

3.2. Decorated cobordisms. In the following, U is the closure of a domain in R2, and P
is a finite subset of ∂U .

Let O1, O2 ⊂ U be two properly embedded unoriented compact 1-submanifolds in U
with ∂O1 = ∂O2 = P . A cobordims between O1 and O2 is a compact properly embedded
unoriented surface S ⊂ U × [0, 1] whose bottom boundary is O1 and whose top boundary
is O2, and whose intersection with (∂U) × [0, 1] consists of the vertical segments P × [0, 1].
A decorated cobordism is a cobordism decorated by finitely many (possibly zero) distinct
points or dots, which lie in the interior of S. Let DC(O1, O2)• be the set of isotopy classes of
decorated cobordisms between O1 and O2. Moreover, let DC(O1, O2)•/ℓ be the quotient of
the F2-vector space spanned the elements of DC(O1, O2)• modulo the following local rela-
tions, called respectively the sphere relation, the dot relation and the neck-cutting relation:

(S) ⊔ S = 0, (D) ⊔ S = S,

(N) = + .

Figure 3. Local relations in DC(O1, O2)•/ℓ.

In the first two relations, S stands for an arbitrary decorated cobordism, and in the
third relation, the three pictures stand for three decorated cobordisms, which are identical
everywhere except in a small ball B3 ⊂ U × [0, 1] where the differ as shown. Using the above
relations, one can deduce the important double dot relation:

(DD) = ⊔ t

Figure 4. The double dot relation.
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In the (DD) relation, t stands for a 2-sphere decorated by exactly three dots. Thus, the
(DD) relation says that we can remove any pair of dots lying on the same component of a
decorated cobordism, at the expense of adding a 2-sphere decorated by exactly three dots.
We can endow DS(O1, O2)•/ℓ with the structure an F2[t]-module by defining tnS to be the
disjoint union of S with n disjoint copies of t.

Definition 3.4. Let Cob(U, P )•/ℓ be the pre-additve category whose objects are unoriented
properly embedded compact 1-manifolds O ⊂ U with ∂O = P , and whose morphism sets
are the F2-vector spaces DC(O1, O2)•/ℓ. Composition of morphisms S1 : O1 → O2 and
S2 : O2 → O3 is given by stacking S2 on top of S1.

Let Mat(U, P ) := Mat(Cob(U, P )•/ℓ) and Kom(U, P ) := Kom(Cob(U, P )•/ℓ).

3.3. Quantum grading. To incorporate the quantum grading (or j-grading) of Khovanov
homology, one has to redefine the objects of Cob(U, P )•/ℓ as being pairs (O, n) where O ⊂ U
is a properly embedded compact 1-manifold with ∂O = P as before, and n is an integer. A
morphism S : (O1, n1) → (O2, n2) is given by a morphism S : O1 → O2, i.e. by an element
S ∈ DC(O1, O2)•/ℓ. The quantum degree of a morphism is defined by:

deg(S) := e(S) − 2d(S) + n2 − n1 ,

where e(S) := χ(S) − |P |/2 is the Euler measure of S, and d(S) is the number of dots
on S. Let Cob(U, P )0•/ℓ denote the category which has the same objects as Cob(U, P )•/ℓ,

but whose morphisms S : (O1, n1) → (O2, n2) are required to satisfy deg(S) = 0. Let
Mat(U, P )0 := Mat(Cob(U, P )0•/ℓ) and Kom(U, P )0 := Kom(Cob(U, P )0•/ℓ). For each integer

m, let {m} denote the degree shift functor given by (O, n){m} := (O, m + n). Identifying
(O, 0) with O, we will henceforth write O{n} instead of (O, n).

3.4. Formal Khovanov bracket. Now let T ⊂ U be a tangle diagram with ∂T = P . Let
χ be the set of crossings of T and {0, 1}χ the set of all maps ǫ : χ → {0, 1}. A crossing c ∈ χ
(looking like: /) can be resolved in two possible ways, H and 1, called its 0-resolution and
its 1-resolution, respectively. Given ǫ ∈ {0, 1}χ, denote by Tǫ the crossingless tangle diagram
obtained from T by replacing every c ∈ ǫ−1(0) by its 0-resolution, and every c ∈ ǫ−1(1) by
its 1-resolution. For ǫ, ǫ′ ∈ {0, 1}χ and c ∈ χ, we will write ǫ <c ǫ′ iff ǫ and ǫ′ satisfy ǫ(c) = 0
and ǫ′(c) = 1, and ǫ(c′) = ǫ′(c′) for all c′ ∈ χ with c′ 6= c. For such ǫ, ǫ′, there is a preferred
cobordism Sǫ′ǫ : Tǫ → Tǫ′ containing no dots, such that Sǫ′,ǫ ∩ (Nbd(c) × [0, 1]) is a saddle
cobordism between H and 1, and Sǫ′,ǫ \ (Nbd(c) × [0, 1]) is the identity cobordism. For
ǫ, ǫ′ ∈ {0, 1}χ and c ∈ χ, let (dc)ǫ′ǫ : Tǫ → Tǫ′ be the morphism defined by (dc)ǫ′ǫ := Sǫ′,ǫ if
ǫ <c ǫ′, and (dc)ǫ′ǫ := 0 otherwise. Let dǫ′ǫ :=

∑
c∈χ(dc)ǫ′ǫ and |ǫ| := |ǫ−1(1)| =

∑
c∈χ ǫ(c).

Suppose T is oriented and let n+ (n−) be the number of positive (negative) crossings in T .
If ǫ and ǫ′ satisfy |ǫ| = i + n− and |ǫ′| = i + 1 + n− for an i ∈ Z, then we set di

ǫ′ǫ := dǫ′ǫ.

Definition 3.5. The formal Khovanov bracket of T is the chain complex Kh(T ) := (Kh(T )∗,
d∗) ∈ Kom(U, P )0 defined by Kh(T )i :=

⊕
|ǫ|=i+n−

Tǫ{i + n+ − 2n−} and di := (di
ǫ′ǫ).

Definition 3.5 is justified by the following lemma:

Lemma 3.6. di+1 ◦ di = 0 for all i ∈ Z.

Proof. Ignoring differentials and gradings for a moment, we can identify Kh(T ) with the
object Kh(T ) =

⊕
ǫ∈{0,1}χ Tǫ ∈ Mat(U, P ). We can then identify the differential in Kh(T )

with the endomorphism d := (dǫ′ǫ) of Kh(T ) ∈ Mat(U, P ) (with dǫ′ǫ defined as above). For
c ∈ χ, let dc be the endomorphism of Kh(T ) ∈ Mat(U, P ) defined by dc := ((dc)ǫ′ǫ). We
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have dc ◦ dc = 0 because for any three elements ǫ, ǫ′, ǫ′′ ∈ {0, 1}χ, at least one of the two
matrix entries (dc)ǫ′′ǫ′ and (dc)ǫ′ǫ is equal to zero. We also have dc ◦ dc′ = dc′ ◦ dc for all
c, c′ ∈ χ because distant saddles can be time-reordered by isotopy. Since d =

∑
c∈χ dc, this

implies d ◦ d = 0, and thus the lemma follows. �

The following theorem was proved by Bar-Natan [BN05a].

Theorem 3.7. The graded homotopy type of Kh(T ) is a tangle invariant.

3.5. Relation with Khovanov homology and Lee homology. If T is a link diagram
(i.e. ∂T = ∅), then the formal Khovanov bracket of T refines both the F2-coefficient Kho-
vanov homology [Kho00] and the F2-coefficient Lee homology [Lee02] of T . Indeed, let
Hom(∅,−) be the functor which maps an object O ∈ Cob(U, ∅)•/ℓ to the graded morphism
set Hom(∅, O), regarded as a graded F2[t]-module via the (DD) relation. Then the F2-
coefficient Khovanov homology of T is the homology of the chain complex FKh(Kh(T )),
where FKh(−) := Hom(∅,−) ⊗t=0 F2, and the F2-coefficient Lee homology of T is the ho-
mology of the chain complex of FLee(Kh(T )), where FLee(−) := Hom(∅,−) ⊗t=1 F2.

3.6. Tensor products. In this subsection, we describe a special case of the ‘categorified
planar algebra’ structure of Kh(T ) that was introduced in [BN05a, Section 5]. Assume that
we have the following situation:

• U ′ and U ′′ are the closures of two disjoint domains in R2 and U := U ′ ∪ U ′′

• P1 and P2 are finite subsets of (∂U ′) \ U ′′ and (∂U ′′) \ U ′, respectively.
• P0 is a finite subset of U ′ ∩ U ′′.
• P ′ := P0 ∪ P1 and P ′′ := P0 ∪ P2 and P := P1 ∪ P2.

In this situation, there is a natural functor

Cob(U ′, P ′)•/ℓ × Cob(U ′′, P ′′)•/ℓ −→ Cob(U, P )•/ℓ

which takes a pair of objects (O′, O′′) (or morphisms (S′, S′′)) to the union O′ ∪ O′′ (or
S′ ∪ S′′). We write this functor as a tensor product, and we extend it to a functor
Mat(U ′, P ′) × Mat(U ′′, P ′′) → Mat(U, P ) by declaring that the tensor product distributes
over direct sums, i.e. (O′

1⊕O′
2)⊗(O′′

1 ⊕O′′
2 ) := (O′

1⊗O′′
2 )⊕(O′

1⊗O′′
2 )⊕(O′

2⊗O′′
2 )⊕(O′

2⊗O′′
2 )

and (F ′ ⊗ F ′′)i⊗k,j⊗l = F ′
ij ⊗ F ′′

kl. Given two chain complexes C′ ∈ Kom(U ′, P ′) and

C′′ ∈ Kom(U ′′, P ′′), we define C′ ⊗ C′′ ∈ Kom(U, P ) to be the chain complex whose un-
derlying object is the tensor product C′ ⊗ C′′ ∈ Mat(U, P ), and whose differential is the
endomorphism (in Mat(U, P )) given by

dC′⊗C′′ := dC′ ⊗ 1C′ + 1C′′ ⊗ dC′′

where dC′ , dC′′ , 1C′ , 1C′′ are the differentials and the identity morphisms of C′ and C′′,
respectively. As for the gradings, it is understood that both the homological grading and
the quantum grading are additive under tensor products. The following theorem was shown
(in greater generality) in [BN05a, Section 5].

Theorem 3.8. Let T ′ ⊂ U ′ and T ′′ ⊂ U ′′ be tangle diagrams with ∂T ′ = P ′ and ∂T ′′ = P ′′.
Then Kh(T ′ ∪ T ′′) is canonically isomorphic to Kh(T ′) ⊗ Kh(T ′′).

3.7. Delooping. Let ‘©’ denote the connected 1-manifold consisting of a single circle.
More generally, let ‘©n’ denote the 1-manifold consisting of n disjoint circles, and let ∅{1}
and ∅{−1} denote degree-shifted copies of the empty 1-manifold. The following lemma is
well-known (see e.g. [BN06, Lemma 4.1]).

Lemma 3.9. The objects © and ∅{1} ⊕ ∅{−1} are isomorphic in Mat(U, ∅)0.
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Proof. Let V := ∅{1} ⊕ ∅{−1}, and let G : © → V and H : V → © be the morphisms
given by the matrices (G11, G21)

t and (H11, H12), where G11, G21, H11, H12 are cobordisms
homeomorphic to disks, with G21 and H11 containing no dots, and G11 and H12 containing
a single dot each. Using the local relations shown in Figure 3, one can easily check that
G ◦ H and H ◦ G are the identity morphism of V and ©, respectively. �

Let C ⊂ Cob(U, P )•/ℓ be the full subcategory containing of all objects of the form O{n},
where O is a 1-manifold without closed components, and n ∈ Z is an arbitrary integer
(in fact, we will henceforth drop the {n} from the notation). Note that every object O ∈
Cob(U, P )•/ℓ can be written in the form O = O′ ⊗ ©n, where O′ ∈ C and n ≥ 0, and the
tensor product ‘⊗’ denotes a disjoint union. (This notation is consistent with the one used
in the previous subsection for P0 = ∅). By applying the isomorphism G : © → V defined in
the proof of Lemma 3.9 repeatedly to each circle in O = O′ ⊗©n, we can define a functor
which sends the object O ∈ Mat(U, P ) to an isomorphic object in Mat(C). Formally, this
functor is defined as follows.

Definition 3.10. The delooping functor D : Mat(U, P ) → Mat(C) sends an object O =
O′ ⊗©n (with O′ ∈ C) to the object D(O) := O′ ⊗ V ⊗n, and a morphism S : O′

1 ⊗©n1 →
O′

2 ⊗©n2 to the morphism D(S) := (1 ⊗ G⊗n2) ◦ S ◦ (1 ⊗ H⊗n1) where V and G, H are as
in the proof of Lemma 3.9, and 1 stands for the identity morphism of either O′

1 or O′
2.

4. Operations involving dots

In this section, we define algebraic operations for manipulating the dots that decorate a
decorated cobordism.

4.1. Dot multiplication. Let U be the closure of a domain in R2 and P be a finite sub-
set of ∂U . Let O ⊂ U be an object of the pre-additive category Cob(U, P )•/ℓ defined in
Subsection 3.2, and let p ∈ O be an arbitrary point on O.

Definition 4.1. The dot multiplication map is the endomorphism Xp : O → O given by
the cobordism O × [0, 1], decorated by a single dot lying in the interior of the segment
{p} × [0, 1] ⊂ O × [0, 1]. If p is a point of ∂O = P , then we move the dot slightly into the
interior of O×[0, 1], so that the result is a decorated cobordism in the sense of Subsection 3.2.

If O1, O2 ⊂ U are two objects of Cob(U, P )•/ℓ containing a point p ∈ O1 ∩ O2, and
S : O1 → O2 is a decorated cobordism commuting with Xp, then we define

xpS := Xp ◦ S = S ◦ Xp .

The above definitions extend to Mat(U, P ) as follows. Let O = (O1, . . . , Om) be an object in
Mat(U, P ) and p ∈

⋂
Oi. Then the dot multiplication map Xp : O → O is the endomorphism

whose off-diagonal entries are zero and whose diagonal entry (Xp)ii is the decorated cobor-
dism xp(Oi × [0, 1]). Similarly, if F : O → O′ is a morphism commuting with Xp : O → O′

for a point p ∈
⋂

Oi ∩
⋂

O′
j , then we define xpF := Xp ◦ F = F ◦ Xp.

Definition 4.2. The endpoint ring F2[P ] is the commutative polynomial ring with coeffi-
cients in F2 in formal variables xp, one for each p ∈ P .

Since every morphism in Cob(U, P )•/ℓ contains the segment {p} × [0, 1] and hence com-
mutes with Xp for all p ∈ P , the endpoint ring F2[P ] acts on morphism sets of Cob(U, P )•/ℓ

(or MatU, P ) by xp · S := xpS = Xp ◦ S = S ◦ Xp.



8 STEPHAN M. WEHRLI

4.2. Dot derivation. Let O1, O2 ⊂ U be two compact embedded 1-manifolds with ∂O1 =
∂O2 = P , and let S ∈ DC(O1, O2)• be a decorated cobordism containing m ≥ 0 dots.

Definition 4.3. The derivative of S with respect to the dot is the sum

∂•S := S1 + . . . + Sm ∈ DC(O1, O2)•/ℓ ,

where Si is the decorated cobordism obtained from S by removing the ith dot.

Lemma 4.4. The map ∂• : S 7→ ∂•S descends to a linear endomorphism of DC(O1, O2)•/ℓ.

Proof. We have to check that ∂• is compatible with the local relation shown in Figure 3.
Applying ∂• to the two sides of the (S) relation yields zero on both sides, and so there is
nothing to prove in this case. Applying ∂• to the (D) relation yields zero on the right-
hand side and an undecorated sphere on the left-hand side. But an undecorated sphere is
equivalent to zero by the (S) relation, whence ∂• is also compatible with the (D) relation.
Compatibility with the (N) relation follows because ∂• applied to the left-hand side of (N)
gives zero, and ∂• applied to the right-hand side of (N) yields a sum of two identical term,
which is zero because we are working with F2 coefficients. �

The above lemma implies that ∂• acts on the morphism sets of Cob(U, P )•/ℓ, and the fol-
lowing lemma says that ∂• satisfies Leibniz’ rule with respect to composition of morphisms.

Lemma 4.5. We have ∂•(S ◦ S′) = (∂•S) ◦ S′ + S ◦ ∂•S
′.

Proof. Obvious from the definition of ∂•. �

Corollary 4.6. If S satisfies S ◦ S = 0, then S commutes with ∂•S.

Proof. Since coefficients are in F2 and since ∂• satisfies Leibniz’ rule by Lemma 4.5, we can
write the commutator of S with ∂•S as [S, ∂•S] = S ◦ ∂•S +(∂•S) ◦S = ∂•(S ◦S), and thus
the corollary follows. �

We extend ∂• to morphisms of Mat(U, P ) (or Kom(U, P )) by setting ∂•(Fij) := (∂•Fij).
It is easy to see that Lemma 4.5 and Corollary 4.6 remain true for this extended version of
∂•.

Remark 4.7. Note that ∂• raises the quantum degree by 2 and satisfies ∂•◦∂• = 0 (again we
are using that coefficients are in F2). Therefore, the subcategory Cob(U, P )ev

•/ℓ ⊂ Cob(U, P )•/ℓ

which has the same objects as Cob(U, P )•/ℓ but whose morphisms are required to have even
quantum degree (i.e. deg(S) ∈ 2Z) becomes a differential graded category when equipped
with the derivation ∂•.

4.3. Dot rotation. In this subsection, we assume that U = D is the closed unit disk in R
2

and P ⊂ ∂U is the set P = {a, b, c, d} defined in Section 2. As in Section 2, we denote by Rz

the self map of D× [0, 1] ⊂ R3 given by 180◦ rotation around the z-axis. Since Rz(P ) = P ,
the rotation Rz acts on objects and morphisms of Cob(D, P )•/ℓ by sending an object O ⊂ D
to the rotated object Rz(O), and a morphism S ⊂ D× [0, 1] to the rotated morphism Rz(S).
Since this action is compatible with the composition of morphisms, it defines a functor

Rz : Cob(D, P )•/ℓ −→ Cob(D, P )•/ℓ

The goal of this subsection is to re-express this functor in terms of the algebraic operations
introduced in the previous two subsections. To do this, we first define

rz : F2[P ] −→ F2[P ]
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to be the ring automorphism induced by mapping xp ∈ F2[P ] := F2[xa, xb, xc, xd] to
rz(xp) := xRz(p) ∈ F2[P ] for all p ∈ P . Explicitly, rz exchanges xa with xc and xb with xd.
The following lemma is obvious.

Lemma 4.8. Rz(fS) = rz(f)Rz(S) for every morphism S in C and every f ∈ F2[P ].

Now let C be the full subcategory of Cob(D, P )•/ℓ containing all objects without closed
components, and let D : Mat(D, P ) → Mat(C) be the delooping functor defined as in Sub-
section 3.7. The subcategory C contains two preferred objects: O0 := [a, d] ∪ [b, c] and
O1 := [a, b]∪ [c, d], where [p, q] ⊂ D denotes the straight line segment connecting the points
p, q ∈ P . Let C′ be the full subcategory of C over the objects O0 and O1. (More precisely,
C′ contains all objects that are of the form O{n} where O ∈ {O0, O1} and {n} is a grading
shift by an arbitrary n ∈ Z). Since every object in C is isotopic rel. boundary (and hence
isomorphic in C) to exactly one of the two objects O0 and O1, we can define a natural
functor S : C → C′ by sending O ∈ C to O0 or O1, whichever of the two is isomorphic to
O. Of course, this functor extends to Mat(C) (or Kom(C)), and we will also write S for this
extended functor.

Definition 4.9. The enhanced delooping functor is the composition D′ := S ◦ D.

Lemma 4.10. D′(O) is isomorphic to O for every O ∈ Mat(D, P ) (or Kom(D, P )).

Proof. Clear from the definitions of D and S. �

Since O0 and O1 are invariant under rotation by 180◦, the functor Rz acts as the identity
on the set Ob(C′) = {O0, O1}.

Definition 4.11. The dot rotation functor is the endofunctor R• : C′ → C′ which acts as
the identity on the set Ob(C′) = {O0, O1} and which takes a morphism S to the morphism

R•(S) := S + (xa + xc)∂•S .

Lemma 4.12. Rz(S) = R•(S) for every morphism S in C′.

Proof. Let S ⊂ D × [0, 1] be a decorated cobordism representing a morphism in C′. Using
the local relations shown in Figures 3 and 4, we can write as S = S′⊔ tn =: tnS′, where tn is
a disjoint union of n ≥ 0 two-spheres, each or them decorated by exactly three dots, and S′

is a decorated cobordism whose every component is homeomorphic to a disk and decorated
by at most one dot. Let S′′ be the undecorated cobordism underlying S′. Then S′′ has to
be either a saddle cobordism or one of the two identity cobordisms O0 × [0, 1] or O1 × [0, 1]
(as these are the only undecorated cobordisms in C′ that have the property that all of their
connected compoents are homeomorphic to disks). In particular, S′′ is invariant under Rz

and has at most two connected components. Moreover, every connected component of S′′

contains at least one of the two segments {a}× [0, 1] or {c}× [0, 1], and this means that we
can write S′ as S′ = xna

a xnc
c S′′ for appropriate na, nc ∈ {0, 1} (where e.g. xaxcS

′′ denotes
the decorated cobordism Xa ◦ Xc ◦ S′′ as in Subsection 4.1). Writing f for the monomial
tnxna

a xnc
c ∈ F2[t, xa, xc] and using Lemma 4.8, we obtain:

Rz(S) = rz(f)Rz(S
′′) = rz(f)S′′

One can easily check that ∂•t = 0, and since S′′ contains no dots, we also have ∂•S
′′ = 0.

Using Lemma 4.5 we therefore obtain ∂•S = ∂•(fS′′) = (∂f)S′′, where ∂ : F2[t, xa, xc] →
F2[t, xa, xc] is the F2[t]-linear map defined by ∂ := ∂/∂xa + ∂/∂xc. Thus:

R•(S) = [f + (xa + xc)(∂f)] S′′
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Comparing the above expressions for Rz(S) and R•(S), we see that it suffices to prove the
equivalence rz(f) ≡ f + (xa + xc)(∂f) modulo local relations. We do this by case by case
analysis: if f = tn, then rz(f) = f and ∂f = 0, so the result follows. If f = tnxa, then
rz(f) = tnxc and ∂f = tn, so rz(f) = tnxc = 2tnxa + tnxc = f + (xa + xc)(∂f); the case
f = tnxc is analogous. Finally, if f = tnxaxc, then rz(f) = f and

(xa + xc)(∂f)S′′ = tn(xa + xc)
2S′′ = tn(x2

a + x2
c)S

′′ = 2tn+1S′′ = 0 ,

where we have used the (DD) relation and the fact that coefficients are in F2. �

Corollary 4.13. R•(D
′(O)) is isomorphic to Rz(O) for all O ∈ Mat(D, P ) (or Kom(D, P )).

Proof. The functors D and S are clearly equivariant under the rotation Rz, and hence
D′ = S ◦ D commutes with Rz. Using Lemmas 4.10 and 4.12, we thus obtain Rz(O) ∼=
D′(Rz(O)) = Rz(D

′(O)) = R•(D
′(O)). �

4.4. Dot migration. Let T ′ be a tangle diagram in Dc := {z ∈ C = R2 : |z| ≥ 1} with
∂T ′ = P = {a, b, c, d}. Assume that T ′ has crossed connectivity as in Proposition 2.6, i.e.
that it represents a a tangle T ′ ⊂ Dc × R which contains an arc connecting the endpoints
{a} × {0} and {c} × {0}. Let α ⊂ T ′ be the projection of this arc, and let c1, . . . , cm ⊂ α
be the crossings of T ′ along α, enumerated in the order shown in Figure 5.

4c

3
c =c

2

c
1

c5

T

b a

dc

α

Figure 5. Crossings c1, . . . , cm along the arc α ⊂ T ′.

For k = 2, . . . , m, let ek ⊂ α be the connected component of α \
⋃

k ck which lies between
ck−1 and ck, and let pk ∈ ek denote the midpoint of ek. Put p1 := a and pm+1 := c.

Definition 4.14. Let X1, . . . , Xm+1 be the endomorphisms of
⊕

i∈Z
Kh(T ′)i ∈ Mat(Dc, P )

defined by Xk := Xpk
, where Xpk

is the dot multiplication map defined in Subsection 4.1.

As explained in the proof of Lemma 3.6, the differential in Kh(T ′) can be regarded as
an endomorphism d of the object

⊕
i∈Z

Kh(T ′)i ∈ Mat(Dc, P ), and this endomorphism can
be written as a sum d =

∑
c∈χ dc. Recall that the matrix entries dǫ′ǫ and (dc)ǫ′ǫ are either

zero or given by a saddle cobordism Sǫ′ǫ ⊂ Dc × [0, 1]. Let r : Dc × [0, 1] → Dc × [0, 1] be
the reflection along Dc × {1/2}, and let dk := dck

.

Definition 4.15. The dot migration homotopies h1, . . . , hm are the endomorphisms of
⊕

i∈Z
Kh(T ′)i =

⊕
ǫ∈{0,1}χ T ′

ǫ ∈ Mat(Dc, P ) defined by hk := d†k where (d†k)ǫ′ǫ := r((dk)ǫǫ′).

Arguing as in the proof of Lemma 3.6, one can easily show:

Lemma 4.16. We have

(1) hk ◦ hk = 0,
(2) hk ◦ hl = hl ◦ hk,
(3) hk ◦ dc = dc ◦ hk,
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for all k, l = 1, . . . , m and all crossings c 6= ck.

The next lemma says that hk is a homotopy between Xk and Xk+1.

Lemma 4.17. d ◦ hk + hk ◦ d = Xk + Xk+1.

Proof. Since d =
∑

c∈χ dc and since hk commutes with dc for all c ∈ χ with c 6= ck, we
have d ◦ hk + hk ◦ d = dk ◦ hk + hk ◦ dk, and so it is enough to prove dk ◦ hk + hk ◦ dk =
Xk + Xk+1. Since this is a purely local equation, we can restrict ourselves to the case
where k = 1 and χ = {c1}, i.e. where T ′ has only one crossing. Then Kh(T ′) = T ′

0 ⊕ T ′
1

(here we ignore the homological grading and the quantum grading), where T ′
0 and T ′

1 are
the crossingless diagrams obtained by replacing the crossing c1 (= /) by its 0-resolution
(H) and its 1-resolution (1), respectively. We can regard the differential d = d1 in Kh(T ′)
as an endomorphism of the object T ′

0 ⊕ T ′
1 ∈ Mat(Dc, P ). As such, it is given by a 2 × 2

matrix, whose only non-zero entry is d10 = S10, where S10 is a saddle cobordism (as in
Subsection 3.4). Similarly, the homotopy h := h1 is given by a 2 × 2-matrix whose only
non-zero entry is the saddle cobordism h01 = r(S10). Thus, (h ◦ d)00 = r(S10) ◦ S10 and
(d◦h)11 = S10◦r(S10), and all other matrix entries in h◦d and d◦h are zero. The cobordism
r(S10) ◦ S10 is a composition of two ‘opposite’ saddle cobordisms, and it is easy to see that
such a composition results in a cobordism looking like the identity cobordism T ′

0 × [0, 1],
except that the two components of H × [0, 1] are connected by a tube. Applying the (N)
relation to this tube, we obtain

(h ◦ d)00 = r(S10) ◦ S10 = (x1 + x2)(T
′
0 × [0, 1]) = (x1 + x2)100

where 100 is the identity morphism of T ′
0. Similarly, we obtain (d ◦ h)11 = (x1 + x2)111

where 111 is the identity morphism of T ′
1. Thus, d ◦ h + h ◦ d = (x1 + x2)1 = X1 + X2 as

desired. �

Lemma 4.18. hk ◦ d ◦ hk = 0.

Proof. By the previous lemma, we have d ◦ hk = hk ◦ d + Xk + Xk+1, and inserting this into
hk ◦ d ◦ hk, we obtain hk ◦ d ◦ hk = hk ◦ hk ◦ d + hk ◦ (Xk + Xk+1). The first term on the
right-hand side vanishes because hk ◦ hk = 0, and to see that the second term vanishes, we
can assume that T ′ consists of a single crossing, i.e. k = 1 and χ = {c1} as in the proof of the
previous lemma. Then (h1)01 = r(S10) (as in the proof of the previous lemma), and since the
cobordism r(S10) has only one connected component, we have x1r(S10) = x2r(S10), whence
h1◦X1 = h1◦X2. Using that coefficients are in F2, we get h1◦(X1+X2) = 2h1◦X1 = 0. �

5. Proof of Proposition 2.6

In this section, we use the notations of Section 2. assume that the hypotheses of Propo-
sition 2.6 are satisfied. Thus,

In particular, T denotes a tangle diagram in the unit disk D ⊂ R2, and T ′ a tangle diagram
in Dc := R2 \ Int(D). The endpoints of T and T ′ lie in the set ∂T = ∂T ′ = P = {a, b, c, d} ⊂
∂D. As in Proposition 2.6, we assume that T ′ represents a tangle T ′ ⊂ Dc × R ⊂ R3

which has crossed connectivity, i.e. contains an arc connecting the endpoints {a} × {0}
and {c} × {0}. We also assume that the mutation is a z-mutation, i.e. that it consists in
replacing T by Rz(T ). Let L := T ∪ T ′ and L′ := Rz(T ) ∪ T ′ denote the link diagrams
before and after mutation. Using the tensor product theorem (Theorem 3.8), we can write
the formal Khovanov brackets of L and L′ as:

Kh(L) = Kh(T )⊗ Kh(T ′) and Kh(L′) = Kh(Rz(T )) ⊗ Kh(T ′)
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Let C′ ⊂ Cob(D, P )•/ℓ be the full subcategory generated by the two objects O0 := [a, d]∪[b, c]
and O1 := [a, b] ∪ [c, d] where [p, q] ⊂ D denotes the straight line segment connecting the
points p, q ∈ P as in Subsection 4.3. Let D′ : Mat(D, P ) → Mat(C′) denote the enhanced
delooping functor (Definition 4.9) and R• : Mat(C′) → Mat(C′) the dot rotation functor
(Definition 4.11). By Lemma 4.10, Kh(T ) is isomorphic to D′(Kh(T )), and hence Kh(L)
is isomorphic to the complex

A := D
′(Kh(T )) ⊗ Kh(T ′)

Since the construction of Kh(T ) is equivariant with respect to the rotation Rz, we have
Kh(Rz(T )) = Rz(Kh(T )). Moreover, Corollary 4.13 implies that Rz(Kh(T )) is isomorphic
to R•(D

′(Kh(T ))), and hence Kh(L′) is isomorphic to the complex

B := R•(D
′(Kh(T ))) ⊗ Kh(T ′)

To prove Proposition 2.6, it is now enough to show A is isomorphic to B. By definition,
R• acts as the identity on the set Ob(C′) = {O0, O1}, and so we have A = B if we ignore
the differentials in A and B (i.e. if we just consider the objects

⊕
i∈Z

Ai and
⊕

i∈Z
Bi

of Mat(R2, ∅) instead of the actual complexes A = (A∗, d∗A) and B = (B∗, d∗B)). The
differentials in A and B are given by

dA = δ ⊗ 1 + 1 ⊗ d and dB = R•(δ) ⊗ 1 + 1 ⊗ d ,

where δ is the differential in D′(Kh(T )) and d is the differential in Kh(T ′), and 1 stands
for an identity morphism. To prove that the complexes A and B are isomorphic, we must
therefore construct an automorphism ϕ of the object A = B ∈ Mat(R2, ∅) which satisfies
ϕ ◦ dA = dB ◦ ϕ.

Let T ′ ⊂ Dc ×R be the tangle represented by T ′ ⊂ Dc. Let α ⊂ T ′ the projection of the
arc of T ′ connecting {a}× {0} to {c}× {0}, and let c1, . . . , cm be the sequence of crossings
along α, as in Figure 5. As in Subsection 4.4, we denote h1, . . . , hm the dot migration
homotopies (Definition 4.15) and by X1, . . . , Xm+1 the maps Xk := Xpk

(Definition 4.14).
For k = 1, . . . , m, we define ϕk to be the endomorphism of A = B ∈ Mat(R2, ∅) given by

ϕk := 1 ⊗ 1 + (∂•δ) ⊗ hk

where ∂• is the derivative with respect to the dot (Definition 4.3).

Definition 5.1. Let ϕ be the composition ϕ := ϕ1 ◦ . . . ◦ ϕm ∈ EndMat(R2,∅)(A = B).

Using Lemma 4.16 and the fact that coefficients are in F2, it is easy to check that ϕk◦ϕk =
1 ⊗ 1 and ϕk ◦ ϕl = ϕl ◦ ϕk for all k, l, and hence also ϕ ◦ ϕ = 1 ⊗ 1. In particular, ϕ is
invertible.

Remark 5.2. Since every self-crossing of α appears twice in the list c1, . . . , cm, every
endomorphism ϕk corresponding to a self-crossing of α appears twice in ϕ. Since ϕk squares
to the identity, we can thus ignore all self-crossings of α, and define ϕ as the product over
all ϕk for which ck is not a self-crossing of α.

To see that ϕ satisfies ϕ ◦ dA = dB ◦ ϕ as desired, we need several technical lemmas.

Lemma 5.3. ϕ commutes with δ ⊗ 1.

Proof. Corollary 4.6 tells us that ∂•δ commutes with δ, and this immediately implies that
each ϕk (and hence also ϕ) commutes with δ ⊗ 1. �

Lemma 5.4. ϕk ◦ (1 ⊗ d) ◦ ϕ−1
k = 1 ⊗ d + (∂•δ) ⊗ (Xk + Xk+1).
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Proof. Direct calculation using ϕk = ϕ−1
k = 1 ⊗ 1 + (∂•d) ⊗ hk yields

ϕk ◦ (1 ⊗ d) ◦ ϕ−1
k = 1 ⊗ d + (∂•δ) ⊗ (d ◦ hk + hk ◦ d) + (∂•δ)

2 ⊗ (hk ◦ d ◦ hk)

and now the claim follows from Lemmas 4.17 and 4.18. �

Corollary 5.5. ϕ ◦ (1 ⊗ d) ◦ ϕ−1 = 1 ⊗ d + (∂•δ) ⊗ (Xa + Xc).

Proof. Recall that Xl = Xpl
= xpl

1 and from this it easily follows that Xl ◦ hk = xpl
hk =

hk ◦X for all k, l. Thus ϕk commutes with (∂•δ)⊗Xl for all k, l. Recalling that ϕ = ϕ−1 =
ϕ1 ◦ . . . ◦ ϕm and using Lemma 5.4 repeatedly, one can now conclude

ϕ ◦ (1 ⊗ d) ◦ ϕ−1 = d ⊗ 1 + (∂•δ) ⊗ [(X1 + X2) + (X2 + X3) + . . . + (Xm + Xm+1)]

and the telescope sum in the square brackets collapses to X1+Xm+1 because all intermediate
terms appear twice and hence cancel. Since p1 = a and pm+1 = c (see Subsection 4.4), we
have X1 = Xa and Xm+1 = Xc, whence X1 + Xm+1 = Xa + Xc. �

We are now ready to prove Proposition 2.6.

Proof of Proposition 2.6. We have to show that ϕ ◦ dA ◦ ϕ−1 = dB . This is now a direct
calculation:

ϕ ◦ dA ◦ ϕ−1 (1)
= ϕ ◦ (δ ⊗ 1 + 1 ⊗ d) ◦ ϕ−1

(2)
= δ ⊗ 1 + ϕ ◦ (1 ⊗ δ) ◦ ϕ−1

(3)
= δ ⊗ 1 + 1 ⊗ d + (∂•δ) ⊗ (Xa + Xc)
(4)
= δ ⊗ 1 + 1 ⊗ d + ((xa + xc)(∂•δ)) ⊗ 1
(5)
= R•(δ) ⊗ 1 + 1 ⊗ d
(6)
= dB .

Equalities (1) and (6) are the definitions of dA and dB, respectively. Equality (5) is the
definition of R•. Equality (2) follows because ϕ commutes with δ ⊗ 1 by Lemma 5.3.
Equality (3) is Corollary 5.5. To see (4), observe that 1⊗Xa = Xa ⊗ 1 because 1⊗Xa and
Xa ⊗ 1 are both obtained from the identity morphism 1⊗ 1 by inserting a dot into the line
segment {a} × [0, 1] (cf. Definitions 4.1 and 4.14). Therefore:

(∂•δ) ⊗ Xa = (1 ⊗ Xa) ◦ [(∂•δ) ⊗ 1] = (Xa ⊗ 1) ◦ [(∂•δ) ⊗ 1] = (xa∂•δ) ⊗ 1 ,

and similarly: (∂•δ) ⊗ Xc = (xc∂•δ) ⊗ 1. �
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