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In [28], Lawrence Roberts, extending the work of Ozsváth and Szabó in [23], showed
how to associate to a link, L , in the complement of a fixed unknot, B ⊂ S3 , a spectral
sequence whose E2 term is the Khovanov homology of a link in a thickened annulus
defined in [2], and whose E∞ term is the knot Floer homology of the preimage of B
inside the double-branched cover of L .

In [6], we extended [23] in a different direction, constructing for each knot K ⊂ S3 and
each n ∈ Z+ , a spectral sequence from Khovanov’s categorification of the reduced,
n–colored Jones polynomial to the sutured Floer homology of a reduced n–cable of K .
In the present work, we reinterpret Roberts’ result in the language of Juhász’s sutured
Floer homology [8] and show that the spectral sequence of [6] is a direct summand of
the spectral sequence of [28].

57M27; 57R58, 81R50, 57M12

1 Introduction

Heegaard Floer homology [19] and Khovanov homology [10] have transformed the land-
scape of low-dimensional topology in the past decade, generating a wealth of applications,
most notably to questions in knot concordance (cf., [16], [27], [26]), Dehn surgery (cf.,
[22], [29]), and contact geometry (cf., [20], [25]). The philosophies underlying the theories’
constructions are quite different, yet there are intriguing connections between the two. The
best-understood such connection is an algebraic relationship, discovered by Ozsváth-Szabó,
between the homology of a Khovanov-type chain complex associated to a link and the
homology of a Heegaard Floer-type chain complex associated to its double-branched cover.

Specifically, in [23] Ozsváth and Szabó show how to associate to a link L ⊂ S3 a spectral
sequence whose E2 term is K̃h(L) and whose E∞ term is ĤF(Σ(S3,L)). Here (and
throughout), K̃h denotes the reduced version of Khovanov homology defined in [11], L
denotes the mirror of L, Σ(A,B) denotes the double-branched cover of A branched over
B, and ĤF denotes (the hat version of) Heegaard Floer homology. Unless explicitly stated
otherwise, all Khovanov and Heegaard Floer homology theories discussed in this paper will
be considered with coefficients in Z2 .
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Later work of Roberts, building on work of Plamenevskaya, demonstrated that this relation-
ship was both useful and more general than originally believed. Specifically, given a link
L in the complement of a fixed unknot, B ⊂ S3 , Roberts exhibits, in [28], the existence
of a spectral sequence from Kh∗(L) (where Kh∗ is a version of Khovanov homology for
links in product manifolds defined in [2]) to (a variant of) the knot Floer homology of
B̃ ⊂ Σ(S3,L), where B̃ is the preimage of B in Σ(S3,L). This allowed him to establish
a relationship, first conjectured in [25], between Plamenevskaya’s transverse invariant [25]
and Ozsváth-Szabó’s contact invariant [20]. Baldwin and Plamenevskaya, in [4], used (an
extension of) this relationship to establish the tightness of a number of non Stein-fillable
contact structures.

In [6], we extended [23] in a different direction, using a version of Heegaard Floer ho-
mology for sutured manifolds (Definition 2.3) developed by Juhász in [8], yielding a proof
that a simple variant of Khovanov homology, categorifying the reduced, n–colored Jones
polynomial and defined in [12], detects the unknot whenever n ≥ 2.

The goal of the present work is to propose a single general framework unifying all of these
results. As in [6], this general framework uses Gabai’s sutured manifold theory [5] and
Juhász’s sutured Floer homology [8]. It not only incorporates all known results of this type
but also clarifies their relationship to each other. In particular, it can be shown to satisfy
nice naturality properties with respect to certain TQFT operations, as detailed in [7].

More specifically, let F be an oriented surface with ∂F 6= ∅, F × I a product sutured
manifold (see Definition 2.3 and Example 2.4), and T ⊂ F× I a tangle (properly imbedded
1–manifold) that is both admissible, i.e.,

T ∩ (∂F × I) = ∅,

and balanced, i.e.,

|T ∩ (F × {1})| = |T ∩ (F × {0})| = n ∈ Z≥0.

Then there should exist a spectral sequence whose E2 term is an appropriate version of
the Khovanov homology of T , which we will denote Kh∗(T), and whose E∞ term is the
sutured Floer homology of Σ(F × I,T), which we will denote SFH(Σ(F × I,T)). We
shall explore these ideas more fully in the sequel–in particular, the appropriate version of
Khovanov homology for balanced tangles in product sutured manifolds should be similar
to what appears in [1], with abelianized gradings–focusing here on the case when F = A is
an annulus and T = L is a 0–balanced tangle (link):

Theorem 2.1 Let L ⊂ A× I be a link in the product sutured manifold A× I . Then there
is a spectral sequence whose E2 term is Kh∗(L) and whose E∞ term is SFH(Σ(A× I,L)).
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Note that we treated the case when F = D in [6]:

Theorem 1.1 [6, Prop. 5.20] Let T ⊂ D× I be an admissible, balanced tangle. Then there
is a spectral sequence whose E2 term is Kh∗(T) and whose E∞ term is SFH(Σ(D× I,T)).1

In fact, Theorem 2.1 is a reinterpretation (and modest extension) of Roberts’ main result in
[28]. (Note that in [28], Roberts restricts to those L intersecting a spanning disk of B in an
odd number of points, while Theorem 2.1 requires no such restriction.) To understand the
connection, let A be an oriented annulus, I = [0, 1] the oriented closed unit interval, and
L ⊂ A× I a link, where A× I has been identified as the standard sutured complement of a
standardly-imbedded unknot, B ⊂ S3 , via the identification:

A× I = {(r, θ, z) | r ∈ [1, 2], θ ∈ [0, 2π), z ∈ [0, 1]} ⊂ R3 ∪∞ = S3,

B = {(r, θ, z) | r = 0} ∪∞ ⊂ S3.

In [28, Prop. 1.1], Roberts constructs a spectral sequence from Kh∗(L), where Kh∗ is a
version of Khovanov homology for links in product manifolds defined in [2]2 to (a variant
of) the knot Floer homology of B̃ ⊂ Σ(S3,L), where B̃ is the preimage of B in Σ(S3,L).
We show (see Proposition 2.24) that this (variant of) the knot Floer homology of B̃ is, in
fact, just the sutured Floer homology of Σ(A× I,L).

Furthermore, there is a nice relationship between the spectral sequences of Theorems 1.1
and 2.1. Specifically a link L ⊂ A× I can be cut along a vertical disk as in Figure 1 to form
an admissible, balanced tangle T ⊂ D× I . The following is a corollary of [7, Thm. 4.5].

Theorem 3.1 Let L ⊂ A× I be an isotopy class representative of an annular link admitting
a projection, P(L), and let λ ⊂ A be a properly imbedded oriented arc representing a
nontrivial element of H1(A, ∂A) such that λ intersects P(L) transversely. Let T ⊂ D × I
be the balanced tangle in D× I obtained by decomposing A× I (Definition 2.8) along the
surface λ× I endowed with the product orientation.

Then the spectral sequence

Kh∗(T)→ SFH(Σ(D× I,T))

is a direct summand of the spectral sequence

Kh∗(L)→ SFH(Σ(A× I,L)).

Furthermore, the direct summand is trivial if there exists some L′ ⊂ A × I isotopic to L
satisfying

|(λ× I) t L′| � |(λ× I) t L|
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Cut

λ

Figure 1: Cutting an annular link projection along a homologically non-trivial oriented arc

Theorem 3.1 can be viewed as the first example of the “naturality” of the relationship be-
tween Khovanov homology and Heegaard Floer homology; under various natural geometric
operations, the spectral sequence behaves “as expected.” See [7] for more examples.

It is also interesting to note that, given a link, L ⊂ S3 , any unknot, B ⊂ S3−N(L), endows
the Khovanov chain complex associated to L ⊂ B3 with a Z–filtration, via the identification

S3 − N(B)↔ A× I

(see [28] and Proposition 2.24). The extra grading inducing this Z–filtration has the
following representation-theoretic interpretation. Suppose T ⊂ D × I is an n–balanced
tangle obtained by decomposing L ⊂ A × I along λ × I , as in Theorem 3.1. Then the
Uq(sl2) tangle invariant associated to T is an endomorphism, J(T), of the Uq(sl2)-module
V⊗n , where V denotes the standard 2–dimensional irreducible representation of Uq(sl2).
Denoting by ak(T) ∈ Z[q±1] the trace of the restriction of J(T) to the k-th weight space in
V⊗n , one can show that the sum,∑

k∈Z

(tq)kak(T) ∈ Z[q±1, t±1],

is precisely the graded Euler characteristic, χt,q(Kh∗(L))), of Kh∗(L), defined as in [28],
with the power of t corresponding to the extra grading. Thus, the extra grading is related to
the decomposition of J(T) according to weight spaces in V⊗n .

We also remark that choosing an alternative rational slope on ∂(S3 − N(B)) corresponds
to choosing an alternative Dehn filling of B, furnishing a plausible means of constructing
Khovanov-type invariants for links in lens spaces.

1 Kh∗(T) is denoted V(T) in [6, Sec. 5].
2 Kh∗(L) is denoted H(L) in [28, Sec. 2].
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2 Spectral Sequence from Khovanov to Sutured Floer

This section is devoted to proving the main theorem:

Theorem 2.1 Let L ⊂ A× I be a link in the product sutured manifold A× I . Then there
exists a spectral sequence from Kh∗(L) to SFH(Σ(A× I,L)).

In the above, Kh∗(L) is the homology of a Khovanov-type chain complex associated to L,
the mirror of L, while SFH(Σ(A× I,L)) is the sutured Floer homology of Σ(A× I,L), the
homology of a Heegaard Floer-type chain complex. Both constructions begin by associating
a cube of resolutions to a projection (diagram) of L ⊂ A × I . As in [6], the main step in
the proof will be a verification of the equivalence of Khovanov and sutured Floer “functors”
applied to the vertices and edges of this cube. We begin by fixing notation and recalling some
standard definitions in Section 2.1. We go on to describe the Khovanov and sutured Floer
functors on resolved link projections in Sections 2.2 and 2.3, establishing their equivalence
in Proposition 2.29.

2.1 Notation and Standard Definitions

Notation 2.2 Throughout, A denotes an oriented annulus and I := [0, 1] denotes the
oriented closed unit interval.

Whenever we write A× I , we shall always assume we have fixed an identification:

A× I := {(r, θ, z) | r ∈ [1, 2], z ∈ [0, 1]} ⊂ R2 × R.}

Let A+ (resp., A− ) denote A× {1} (resp., A× {0}).
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Most of the following definitions can be found in [5], [8], [9], and [6]. See also [10] and
[19].

Definition 2.3 [5] A sutured manifold (Y,Γ) is a compact, oriented 3–manifold with
boundary ∂Y along with a set Γ ⊂ ∂Y of pairwise disjoint annuli A(Γ) and tori T(Γ). The
interior of each component of A(Γ) contains a suture, an oriented simple closed curve which
is homologically nontrivial in A(Γ). The union of the sutures is denoted s(Γ).

Every component of R(Γ) = ∂Y − Int(Γ) is assigned an orientation compatible with the
oriented sutures. More precisely, if δ is a component of ∂R(Γ), endowed with the boundary
orientation, then δ must represent the same homology class in H1(Γ) as some suture. Let
R+(Γ) (resp., R−(Γ)) denote those components of R(Γ) whose normal vectors point out of
(resp., into) Y .

We omit mention of the distinguished annuli, Γ, from the notation when Y is one of the
following standard sutured manifolds:

Example 2.4 Let F be an oriented surface with ∂F 6= ∅. Then F × I denotes the product
sutured manifold (F × I,Γ), where Γ = ∂F × I , and s(Γ) = ∂F × { 1

2}.

Example 2.5 Let (Y,Γ) be a sutured manifold and

(B, ∂B) ⊂ (Y, ∂Y)

a smoothly imbedded 1–submanifold satisfying

∂B ∩ Γ = ∅.

Let Σ(Y,B) be any two-fold cyclic branched cover of Y over B with covering map

π : Σ(Y,B)→ Y.

Then we denote by (Σ(Y,B), Γ̃) the sutured manifold with Γ̃ = π−1(Γ) and sutures
s(Γ̃) = π−1(s(Γ)). If (Y,Γ) is a product sutured manifold, then we omit mention of Γ̃ from
the notation for Σ(Y,B).

Remark 2.6 Note that in general the construction of a 2–fold cyclic branched cover of Y
over B depends upon a choice of homomorphism

φ : H1(Y − B;Z)→ Z2.

In the present work, we make the following canonical choices:
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(1) When Y = D × I and B = T ⊂ D × I is a balanced tangle with m connected
components,

H1(Y − B;Z) ∼= Zm,

with basis given by the meridians µ1, . . . , µm . We choose the homomorphism, φ,
satisfying φ(µi) = 1 ∈ Z2 for all µi .

(2) When Y = A× I and B = L ⊂ A× I is a 0–balanced tangle (link) with m connected
components,

H1(Y − B;Z) ∼= Zm+1,

with basis given by the meridians µ1, . . . , µm along with γ , where γ is represented
by either connected component of s(Γ). We choose the homomorphism, φ, satisfying
φ(µi) = 1 for all µi and φ(γ) = 0. Note that, since the two components of s(Γ) are
homologous mod 2 in Y − B, the choice of γ is irrelevant.

Definition 2.7 [9, Defn. 2.7] A decomposing surface in a sutured manifold, (Y,Γ), is a
properly imbedded, oriented surface, (S, ∂S) ⊂ (Y, ∂Y) such that for every component, λ,
of (∂S) ∩ Γ, one of the following occurs:

• λ is a properly imbedded non-separating arc in Γ such that |λ ∩ s(Γ)| = 1.

• λ is a simple closed curve in an annular component, A, of Γ representing the same
homology class in A as s(Γ).

• λ is a homotopically nontrivial curve in a torus component T of Γ, and if δ is another
component of T ∩ (∂S), then λ and δ represent the same homology class in T .

Definition 2.8 Given a decomposing surface, S , in a sutured manifold, Y , the result of
decomposing Y along S is a new sutured manifold, (Y ′,Γ′), obtained as follows.

• Y ′ = Y − Int(N(S)),

• Γ′ = (Γ ∩ Y ′) ∪ N(S′+ ∩ R−(Γ)) ∪ N(S′− ∩ R+(Γ)),

• R+(Γ′) = ((R+(Γ) ∩ Y ′) ∪ S′+)− Int(Γ′),

• R−(Γ′) = ((R−(Γ) ∩ Y ′) ∪ S′−)− Int(Γ′),

where S′+ (resp., S′− ) is the component of ∂N(S)∩ Y ′ whose normal vector field points out
of (resp., into) Y ′ .

Definition 2.9 A link L ⊂ A× I is a smoothly imbedded, unoriented, closed 1–manifold.
Two such imbeddings L1,L2 are said to be equivalent if there is an ambient isotopy taking
L1 to L2 which acts trivially on ∂A× I . A knot is a 1–component link.
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Note that we require our ambient isotopy to act trivially on Γ = ∂A× I , the neighborhood
of the sutures, in order to preserve the structure of the ambient manifold, A× I as a sutured
manifold.

Definition 2.10 Let πz : A× I → A be the standard projection defined by

πz(r, θ, z) = (r, θ).

For any link L ⊂ A × I for which πz(L) ⊂ A is a smooth imbedding away from finitely
many transverse double points, we denote by P(L) the enhancement of πz(L) which encodes
over/undercrossing information. We call P(L) the projection of L.

Definition 2.11 A link L ⊂ A× I is said to be resolved if P(L) is an imbedding.

Definition 2.12 A saddle cobordism S ⊂ A × [0, 1] is a smooth cobordism between two
resolved link projections P(L′) and P(L′′) with the property that ∃ a unique c ∈ [0, 1]
such that

(1) S∩(A×{c}) is a smooth 1–dimensional imbedding away from a single double-point.

(2) S ∩ (A× {s}) is a smooth 1–dimensional imbedding whenever s 6= c.

Let |L′| (resp., |L′′|) denote the number of connected components of L′ (resp., L′′ ). There
are two cases:

(1) When |L′| = |L′′|+ 1, we call S a merge saddle cobordism, and

(2) when |L′| = |L′′| − 1, we call S a split saddle cobordism.

2.2 Khovanov functor

Let L ⊂ A × I be a resolved link with connected components K1, . . . ,Kt,Kt+1, . . . ,Kt+n ,
where

P(Ki)
{

= 0 ∈ H1(A;Z) if i ∈ {1, . . . , t}, and
6= 0 ∈ H1(A;Z) if i ∈ {t + 1, . . . , t + n}.

Denote

Ltriv := K1 q . . .q Kt

Lnon := Kt+1 q . . .q Kt+n.
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Definition 2.13 For L = K1 q . . . q Kt+n ⊂ A × I a resolved link, let Z(L) denote the
Z2 –vector space formally generated by [K1], . . . , [Kt+n]:

Z(L) := SpanZ2([K1], . . . , [Kt+n]).

Define a bigrading on Z(L) by

deg([Ki]) :=

{
(0,−2) for 1 ≤ i ≤ t, and

(−2,−2) else.

The space Z(L) decomposes as Z(L) = Z(Ltriv)⊕ Z(Lnon), where

Z(Ltriv) := SpanZ2([K1], . . . , [Kt]).

Z(Lnon) := SpanZ2([Kt+1], . . . , [Kt+n]).

Definition 2.14 Let V(L) denote the exterior algebra

V(L) := Λ∗Z(L),

i.e. the polynomial algebra over Z2 in formal variables [K1], . . . , [Kt+n] satisfying the
relations [K1]2 ∼ . . . ∼ [Kt+n]2 ∼ 0. The bigrading on Z(L) induces a bigrading on V(L),
via

deg([Ki1] ∧ . . . ∧ [Kik ]) := deg([Ki1]) + . . .+ deg([Kik ]).

Given a bigraded vector space V and a pair (a, b) ∈ Z2 , we denote by V{a, b} the vector
space V , with gradings shifted by (a, b). I.e., degV{a,b}(v) := degV (v)+ (a, b) for all v ∈ V .
Let

V(L) := V(L){n, t + n}.

We can write V(L) as a direct sum

V(L) =
⊕

f ,q∈Z
V(L; f , q)

where V(L; f , q) denotes the subspace consisting of all v ∈ V(L) with deg(v) = (f , q).

Now consider a merge saddle cobordism Sm ⊂ A × [0, 1] between two resolved link
projections P(L′) and P(L′′), where the saddle merges two components of L′ labeled K′i
and K′j . Then there is a natural identification

Z(L′)/[K′i ] ∼ [K′j ] = Z(L′′)

and, correspondingly, there is an isomorphism

α : V(L′)/[K′i ] ∼ [K′j ]
∼=−→ V(L′′).
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Definition 2.15 Associated to Sm is a linear map Vm : V(L′) → V(L′′), referred to as the
multiplication map, and defined as the composite

V(L′) π−−−−→ V(L′)
[K′i ]∼[K′j ]

α−−−−→ V(L′′),

where π denotes the quotient map. Let GVm denote the part of Vm which is f –grading
preserving on V(L′), V(L′′). More explicitly, if x ∈ V(L′′) is a homogeneous element in
f –grading f0 , then

GVm(x) := pf0 ◦ Vm(x),

where pf0 is the projection map pf0 : V(L′′)→ V(L′′; f = f0). Now extend linearly.

Running the merge saddle cobordism Sm backwards produces a split saddle cobordism
S∆ : P(L′′)→ P(L′).

Definition 2.16 Associated to S∆ is a comultiplication map V∆ : V(L′′)→ V(L′), defined
as the composite

V(L′′) α−1
−−−−→ V(L′)

[K′i ]∼[K′j ]
ϕ−−−−→ V(L′),

with ϕ given by ϕ(a) := ([K′i ] + [K′j ])∧ ã, where ã is any lift of a in π−1(a). As above, we
denote by GV∆ the part of V∆ which is f –grading perserving, i.e., GV∆ linearly extends
the map which sends elements x ∈ V(L′′) in f –grading f0 to

pf0 ◦ V∆(x).

The maps GVm , GV∆ are used to define chain complexes associated to a projection P(L)
of a link L ⊂ A× I as follows.

Label the crossings of P(L) by 1, . . . , `. For any `–tuple I = (m1, . . . ,m`) ∈ {0, 1,∞}` ,
we denote by PI(L) the link projection obtained from P(L) by

• leaving a neighborhood of the ith crossing unchanged, if mi =∞,

• replacing a neighborhood of the ith crossing with a “0” resolution, if mi = 0, and

• replacing a neighborhood of the ith crossing with a “1” resolution, if mi = 1.

See Figure 2. Note that our conventions for the “0” and “1” resolutions of a crossing match
those of [23] and [6], which are opposite of Khovanov’s standard convention [10], used by
Roberts in [28].

Definition 2.17 Giving the set {0, 1,∞} the dictionary ordering, we call an `–tuple
I ′ ∈ {0, 1,∞}` = (m1, . . . ,m`) an immediate successor of I if there exists some j such
that mi = m′i if i 6= j and (mj,m′j) is either (0, 1) or (1,∞).
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P i
1(L)

P(L)

P i
0(L)

Figure 2: Replacing the i-th crossing of a projection, P(L), with a 0 or 1 resolution

Definition 2.18 Given a projection P(L) ⊂ A of a link L ⊂ A × I , we define a chain
complex

CV(P(L)) =

 ⊕
I∈{0,1}`

V(PI(L)),D

 ,

where D =
∑
I,I′ DI,I′ , with the sum taken over all pairs I, I ′ ∈ {0, 1}` such that I ′ is

an immediate successor of I , and

DI,I′ : V(PI(L))→ V(PI′(L))

is given by Vm (resp., V∆ ) when PI′(L) is obtained from PI(L) by a merge (resp., split)
saddle cobordism.

If L is equipped with an orientation, then the complex CV(P(L)) can be endowed with
three Z gradings, called the i, j and k–grading.

Definition 2.19 An element v ∈ CV(P(L)) is said to have degree deg(v) = (i, j, k) ∈ Z3

if it is contained in the subspace

CV(P(L); i, j, k) :=
⊕

VI(P(L); f , q) ⊂ CV(P(L))

where the sum ranges over all triples (I, q, f ) ∈ {0, 1}` × Z2 satisfying

i = |I| − n+,

j = q + |I|+ n− − 2n+,

k = f
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where n+ (resp., n− ) denotes the number of positive (resp., negative) crossings in P(L),
and |I| denotes the number of 1’s in the `–tuple I ∈ {0, 1}` .

Remark 2.20 For a resolved link, L ⊂ A × I , our V(L) is equivalent, as a Z2 vector
space, to what Roberts denotes V(L) in [28, Sec. 2], and our (f , q)–bigrading matches his
for resolved links. For an unresolved link L, Roberts’ f –grading (for L) matches ours (for
L), and his q–grading matches our j–grading (which in turn matches our q–grading up
to an overall shift). Note also that, if one forgets the k–grading, then CV(P(L)) becomes
the chain complex that Ozsváth and Szabó associate to L ⊂ S3 in [23]. In particular, the
homology of CV(P(L)) is the Khovanov homology of L ⊂ S3 .

Lemma 2.21 The differential, D, on CV(P(L)), is non-increasing in the k grading. Hence,
CV(P(L)) has the structure of a Z–filtered chain complex, with the Z–filtration induced by
the k–grading.

Proof Let I, I ′ ∈ {0, 1}` , where I ′ is an immediate successor of I , and let PI(L),PI′(L)
denote the associated resolutions.

Suppose that PI′(L) is obtained from PI(L) by merging two components, Ki and Kj , of
PI(L) to form a component, K′ , of PI′(L). Let degf (Ki), degf (Kj) (resp., degf (K′)) denote
their f –degrees as elements of Z(PI(L)) (resp., Z(PI′(L))).

There are three possibilities:

(1) Ki,Kj ⊂ (PI(L))triv

(2) one of Ki,Kj is in (PI(L))triv , while the other is in (PI(L))non , or

(3) Ki,Kj ⊂ (PI(L))non .

In the first two cases,

degf (K′) = min { degf (Ki) , degf (Kj) } ,

and since, in these two cases, PI(L) and PI′(L) have the same number of non-trivial
components, the f –grading shift relating V (PI(L)) to V (PI(L)) is the same as the f –
grading shift relating V (PI′(L)) and V (PI′(L)). Hence, DI,I′ := α ◦ π will be non-
increasing (specifically, either degree 0 or −2) in the (k = f )–grading.

In the third case, degf (K′) = 0, while degf (Ki) = degf (Kj) = −2. Since PI′(L) has two
fewer non-trivial components than PI(L), after applying the f –grading shift to V (PI(L))
(resp., V (PI′(L))) to obtain V (PI(L)) (resp., V (PI′(L))) as above, we similarly conclude
that DI,I′ is non-increasing in the (k = f )–grading.

The case where I ′ is obtained from I by a split saddle cobordism is completely analogous.
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Definition 2.22 Let GCV(P(L)) denote the associated graded complex of the k–filtered
complex CV(P(L)). I.e.,

GCV(P(L)) ∼= (CV(P(L)),GD) ,

where GD =
∑
I,I′ GDI,I′ , with the sum taken over all pairs I, I ′ ∈ {0, 1}` where I ′ is

an immediate successor of I and

GDI,I′ : V(PI(L))→ V(PI′(L))

is given by GVm (resp., GV∆ ) when PI′(L) is obtained from PI(L) by a merge (resp.,
split) saddle cobordism. Let V(L) denote the homology of GCV(P(L)).

Remark 2.23 Our chain complex GCV(P(L)) is isomorphic to the triply–graded chain
complex C∗;∗,∗(P(L)) that Roberts associates to L ⊂ A × I in [28]. Roberts’ complex,
in turn, is essentially equivalent to the Asaeda-Przytycki-Sikora chain complex for P(L),
L ⊂ A × I , defined in [2], except that the Asaeda-Przytycki-Sikora construction requires
L to be framed (but not oriented), whereas Roberts’ construction requires L to be oriented
(but not framed). Note that Asaeda-Przytycki-Sikora’s s–grading appears (without loss of
information) as Roberts’ f –grading and that the relative i– and j–grading on GCV(P(L)), as
well as the absolute k–grading, do not depend on the choice of an orientation for L. Finally,
we remark that the Khovanov-type homology of L, Kh∗(L), referenced in the introduction
and in the statements of Theorems 2.1 and 3.1, is V(L). See Remark 2.20.

2.3 Sutured Floer Functor

Given a link L ⊂ A× I , we alternatively obtain a filtered chain complex using sutured Floer
homology (see [8]), a theory developed by Juhász which assigns Floer homology groups to
balanced sutured manifolds. Recall ([8, Defn. 2.2]) that a sutured manifold (Y,Γ) is said
to be balanced if χ(R+) = χ(R−), and the maps π0(Γ) → π0(∂Y) and π0(∂Y) → π0(Y)
are surjective. Given a balanced sutured manifold (Y,Γ)–for example the branched double-
cover, Σ(A × I,L), where L ⊂ A × I is a link as above–one obtains its sutured Floer
homology, SFH(Y,Γ), by the following procedure:

(1) Construct a balanced, sutured Heegaard diagram ([8, Defn. 2.7, 2.8]), (Σ, α, β ),
for (Y,Γ), where Σ is a compact, oriented surface with non-empty boundary and
no closed components, and α = {α1, . . . , αd}, β = {β1, . . . , βd} are two sets of
pairwise disjoint simple closed curves in Int(Σ) satisfying the condition that the set
α (resp., β ) is linearly independent in H1(Σ;Z). Recall that one obtains a unique
balanced, sutured manifold from a balanced, sutured Heegaard diagram by attaching
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3–dimensional 2–handles to Σ × I along the curves αi × {0} and βj × {1} for
i, j ∈ {1, . . . d}. Γ is ∂Σ× I , and s(Γ) = ∂Σ× { 1

2}.

(2) The data of a balanced Heegaard diagram

(Σ, α = {α1, . . . , αd}, β = {β1, . . . , βd})

and a generic (family of) complex structures on Σ, is used to construct a Floer chain
complex using the half-dimensional tori Tα = α1× . . .×αd and Tβ = β1× . . .×βd

in Symd(Σ). Specifically, one obtains a chain complex with:

(a) Generators: {x ∈ Tα ∩ Tβ},
(b) Differentials:

∂(x) =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y)|µ(φ)=1}

M̂(φ) · y.

As usual, π2(x, y) denotes the homotopy classes of disks (disjoint from ∂Σ) connect-
ing x to y, µ(φ) denotes the Maslov index of φ ∈ π2(x, y), and M̂(φ) denotes the
moduli space of holomorphic representatives of φ, modulo the standard R action.

(3) Denote by CFH(Y,Γ) the chain complex constructed in (2), and by SFH(Y,Γ) its
homology.

In preparation for describing a sutured Floer-type “functor” analogous to the Khovanov-
type “functor” defined in Section 2.2, we now establish, in Proposition 2.24, a relationship
between the sutured Floer homology of Σ(A×I,L) and the knot Floer homology of a certain
link in Σ(S3,L). We shall see that SFH(Σ(A × I,L)) can be identified as the homology
of the associated graded complex of a natural filtered complex for this link in Σ(A× I,L).
Proposition 2.24 provides a sutured-Floer theoretic interpretation of the Floer homology
invariants studied in [28].

In what follows:

• A × I = {(r, θ, z) | r ∈ [1, 2], θ ∈ [0, 2π), z ∈ [0, 1]} ⊂ R3 ∪ ∞ = S3 denotes the
standard imbedding of A× I into S3 , with L ⊂ A× I a fixed (isotopy class of) link,

• B = {(r, θ, z) | r = 0} ∪∞ ⊂ S3 denotes a standardly-imbedded unknot,

• π : Σ(S3,L)→ S3 denotes the branched-covering projection,

• B̃ := π−1(B) denotes the preimage of B in Σ(S3,L),

• DA × I := {(r, θ, z) ∈ R3 | r ∈ [0, 2], z ∈ [0, 1]} denotes the product sutured
manifold obtained by “capping off” one of the sutures of A × I as described in [6,
Defn. 2.8, Prop. 6.2],
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• i : A× I −→ DA × I denotes the inclusion map,

• L̂ := i(L) ⊂ DA × I denotes the image of L under the inclusion,

• p(L) := (lk(L,B) mod 2) denotes the “mod 2 linking number” of L and B, which
we will sometimes call the parity of L,

• Θ denotes the bigraded Z2 vector space formally generated by θ+, θ− :

Θ := SpanZ2(θ+, θ−),

with bigrading given by:

deg(θ+) = (0, 0),

deg(θ−) = (−1,−1), and

• Θ̂ denotes the singly-graded Z2 vector space obtained by forgetting the first of the
two gradings on Θ.

We will also periodically use the following abbreviated notation:

YL := Σ(A× I,L), and

YL̂ := Σ(DA × I, L̂).

Proposition 2.24 CFH(Σ(DA×I, L̂)) can be given the structure of a filtered chain complex
whose associated graded complex has homology

SFH(Σ(A× I,L)) ∼=

{
ĤFK(Σ(S3,L), B̃)⊗Θ if p(L) = 1,
ĤFK(Σ(S3,L), B̃) if p(L) = 0,

Moreover, the spectral sequence associated to this filtered complex converges to

SFH(Σ(DA × I, L̂)) ∼=

{
ĤF(Σ(S3,L))⊗ Θ̂ if p(L) = 1, and
ĤF(Σ(S3,L))

{ 1
2

}
⊗ Θ̂ if p(L) = 0.

Remark 2.25 The bigrading referenced in the above proposition is the (A,M) bigrading
associated to the null-homologous link B̃ ⊂ Σ(S3,L), where A is the filtration (Alexander)
grading on knot Floer homology defined in [17], [27] and elaborated in [21], [13] (see also
[15], [3]), and M is the homological (Maslov) grading on Heegaard Floer homology defined
in [24].

Note that an absolute (A ∈ Q)–grading is only well-defined once a (homology class of)
Seifert surface has been chosen for B̃, and an absolute (M ∈ Q)–grading is only well-
defined in torsion Spinc structures of Σ(S3,L). (The proof of) Proposition 2.24 asserts
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the existence of a canonical identification between filtered chain complexes, preserving
relative bigradings.3 Therefore, SFH(Σ(A × I,L)) inherits an (A,M)–bigrading (resp.,
SFH(Σ(DA × I, L̂)) inherits an M–grading), subject to these parameters.

Proof of Proposition 2.24 Note that Σ(A× I,L) is the sutured manifold (Y,Γ) where

Y = Σ(S3,L)− N(B̃) and s(Γ) = {µ1, µ
′
1, µ2, µ

′
2},

where the µi represent meridians of B̃ and the µ′i represent oppositely-oriented meridians
of B̃. To see this, observe that A × I is the standard sutured knot complement of B ⊂ S3 ,
hence its preimage under π is the complement of B̃ ⊂ Σ(S3,L). It follows that each
meridional (resp., oppositely-oriented meridional) suture lifts to two meridional (resp.,
oppositely-oriented meridional) sutures in Σ(A× I,L).

Furthermore:

• when p(L) = 0, B̃ = B̃1 q B̃2 is a 2–component link. (Y,Γ) is then the standard
sutured link complement (see [8, Example 2.4]), with a pair, (µi, µ

′
i), of sutures on

each boundary component, −∂(N(B̃i)), and

• when p(L) = 1, B̃ is a 1–component link. Hence, (Y,Γ) is a sutured link complement
with both pairs, (µi, µ

′
i), of sutures on the single component of ∂Y = −∂(N(B̃)). Note

that this is a non-standard sutured link complement, since there is an extra pair of
sutures on the single component of −∂(N(B̃)).

Similarly, we see that Σ(DA × I, L̂) is obtained from Σ(S3,L) by deleting two B3 ’s in
N(B̃). Put differently, one obtains Σ(DA × I, L̂) from Σ(A× I,L) = Σ(S3,L)− N(B̃) by
filling in two B3 ’s in N(B̃).

Now, suppose that (Σ, α, β ) is a sutured Heegaard diagram for Σ(A × I,L). Then the
topological observations above imply that one obtains a 4–pointed Heegaard diagram

(Σ′, α ′, β ′,O = (O1,O2),X = (X1,X2))

for Σ(S3,L) compatible with the link B̃ (in the sense of [17], [21], [13]), by taking

•
Σ′ := Σ ∪i=1,2 DOi ∪i=1,2 DXi ,

where DXi (resp., DOi ) are disks containing a distinguished basepoint Xi (resp.,
Oi ) filling in the boundary components of Σ corresponding to the meridians (resp.,
oppositely-oriented meridians) of B̃,

3With respect to a fixed Seifert surface, relative A–gradings lie in Z , while in a fixed Spinc

structure, relative M–gradings lie in some quotient of Z . See [17, Sec. 2], [19, Sec.4].
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• α ′ (resp., β ′ ), are the images of α (resp., β ) under the inclusion map Σ→ Σ′ .

Similarly, by gluing in only the disks DX1 ,DX2 to (Σ, α, β ), one obtains a sutured Heegaard
diagram, (Σ̂, α̂, β̂ ), for Σ(DA × I, L̂).

Let C′ represent the Heegaard-Floer chain complex associated to (Σ′, α ′, β ′,O,X) with

• Generators: {x ∈ Tα′ ∩ Tβ′}

• Differential:

∂′(x) =
∑

y∈Tα′∩Tβ′

∑
{φ∈π2(x,y) |µ(φ)=1,nO(φ)=0}

M̂(φ) · y,

where nO(φ) :=
∑2

i=1 nOi(φ). Then the sutured Floer chain complex associated to
(Σ̂, α̂, β̂ ) is canonically isomorphic to C′ ,4 since the condition that nO(φ) = 0 for φ ⊂ Σ′

is equivalent to the condition that φ ⊂ Σ̂ is never adjacent to ∂Σ̂. Hence,

SFH(Σ(DA × I,L)) ∼=

{
ĤF(Σ(S3,L))⊗ Θ̂ if p(L) = 1, and
ĤF(Σ(S3,L))

{ 1
2 ,

1
2

}
⊗ Θ̂ if p(L) = 0,

as desired. The extra
{ 1

2 ,
1
2

}
grading shift when p(L) = 0 arises due to the convention that

ĤFK(Y,L), for L an `–component link, is defined to be the knot Floer homology of the
“knotification” of L in Y#`−1(S1 × S2) (see [17, Sec. 2.1]).

Furthermore, since intersection positivity guarantees that nX(φ) ≥ 0 for all holomorphic
φ ∈ π2(x, y), we can endow C′ with the structure of a Z–filtered complex by decomposing
the differential as

∂′ =
∞∑

i=0

∂′i ,

where
∂′i (x) :=

∑
y∈Tα′∩Tβ′

∑
{φ∈π2(x,y) |µ(φ)=1,nO(φ)=0,nX(φ)=i}

M̂(φ) · y.

The associated graded complex, (C′, ∂′0), is therefore chain isomorphic to the sutured Floer
complex obtained from (Σ, α, β ), since counting φ ⊂ Σ′ with nX(φ) = nO(φ) = 0 is
equivalent to counting φ ⊂ Σ disjoint from ∂Σ. Hence, SFH(Σ(A× I,L)) is the homology
of the associated graded complex of the filtered complex CFH(Σ(DA × I, L̂)).

4after fixing a generic choice of almost complex structure on Σ̂ , which extends uniquely to a
generic choice of almost complex structure on Σ′
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This immediately implies (see [8, Examples 2.3, 2.4], [8, Prop. 9.2], and [21, Thm. 1.1],
combined with [14, Lemma 2.12]):

SFH(Σ(A× I,L)) ∼=

{
ĤFK(Σ(S3,L), B̃)⊗Θ if p = 1,
ĤFK(Σ(S3,L)), B̃) if p = 0,

as desired.

We are now ready to define a sutured Floer-type “functor”.

In what follows, let (L = Ltriv q Lnon) ⊂ A× I be a resolved link with

Ltriv = K1 q . . .q Kt, and

Lnon = Kt+1 q . . .q Kt+n,

and L̂ = i(L) ⊂ (DA × I) its image under the inclusion i : A× I → DA × I as before.

Definition 2.26 Let ZH(L) denote the Z2 –vector space formally generated by [K1], . . . , [Kt+n]:

ZH(L) := SpanZ2([K1], . . . , [Kt+n]),

endowed with the bigrading:

deg([Ki]) :=
{

(0,−1) for 1 ≤ i ≤ t, and
(−1,−1) else.

The space ZH(L) decomposes as ZH(Ltriv)⊕ ZH(Lnon), where

ZH(Ltriv) := SpanZ2([K1], . . . , [Kt]),

ZH(Lnon) := SpanZ2([Kt+1], . . . , [Kt+n]).

Definition 2.27 Let VH(L) denote the exterior algebra

VH(L) := Λ∗ZH(L),

with its bigrading induced from ZH :

deg([Ki1] ∧ . . . ∧ [Kik ]) := deg([Ki1]) + . . .+ deg([Kik ]),

as in Definition 2.14, and let VH(L) denote the following normalization of VH(L):

VH(L) := VH(L)
{

n− p(L)
2

,
t + n− p(L)

2

}
.
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Recall that p(L) := lk(L,B) mod 2. In particular, when L is a resolved link,

p(L) = n mod 2.

Proposition 2.28 Let L ⊂ A× I be a resolved link, as above. Then

SFH(YL) ∼= VH(L)

as an (A,M)–bigraded Z2 vector space.

Proof Recall (see [19, Sec. 4.2.5], [6, Sec. 3.4]) that if (Y,Γ) is a balanced sutured
manifold, then SFH(Y,Γ) admits an action of Λ∗(H◦1 (Y, ∂Y)), where here (and in what
follows), we use H◦∗(−) to denote H∗(−;Z)/Tors.

Since Proposition 2.24 tells us that SFH(YL) is the homology of the associated graded
complex of CFH(YL̂), it will be convenient for us to begin by examining SFH(YL̂).

In particular, [6, Lem. 5.16] tells us that SFH(YL̂) is a free, rank 1 module over

Λ∗(H◦1 (YL̂, ∂YL̂)⊗Z Z2).

Furthermore, in the proof of [6, Lem. 5.16] we see that

H◦1 (YL̂, ∂YL̂)⊗Z Z2 ∼= H2(#t+nS1 × S2;Z2)
∼= ZH(L),

as ungraded vector spaces and hence

Λ∗(H◦1 (YL̂, ∂YL̂)⊗Z Z2) ∼= VH(L)

as ungraded algebras. To see that they agree as bigraded algebras–and, hence, that
SFH(YL) ∼= VH(L) up to an overall bigrading shift–we need only show that under the
identification:

φ : ZH(L)→ H◦1 (YL̂, ∂YL̂)⊗Z Z2,

elements of
ZH(Ltriv) ≤ ZH(L) (resp., of ZH(Lnon) ≤ ZH(L))

are sent to algebra generators of (A,M)–degree (0,−1), (resp., (-1,-1)).

Since it is immediate, by definition of the H◦1 action (see [19, Sec. 4.2.5], [6, Sec. 3.4]),
that the image of each element of ZH(L) has M–degree −1, as desired, we are left to verify
that the A–degrees of elements of ZH(L) are as stated.

To see this, we will study the H◦1 action on a chain complex, CFH(YL̂), associated to a
particularly nice sutured Heegaard diagram for YL̂ . The generators of CFH(YL̂) will have
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}

}
}

}
Ltriv

Ltriv ∩ A 1
2

Lnon

A1
2

L ⊂ A× I

Lnon ∩ A 1
2

Figure 3: The lefthand figure shows (L = Ltrivq Lnon) standardly imbedded in A×I . The righthand
figure shows the middle level, A 1

2
. The black dots represent the intersection points, L ∩ A 1

2
, the

dotted lines are the branch cuts, and the red (resp., blue) arcs are the projections of the cups (resp.,
caps).

well-defined absolute A–gradings, and the homology of the associated graded complex will
be SFH(YL), as in Proposition 2.24.

Accordingly, we proceed as in [6, Sec. 5.3] by choosing an isotopy class representative of
L satisfying Ki t A 1

2
6= ∅ for all i ∈ {1, . . . t + n}, where A 1

2
:= A×

{ 1
2

}
.

Let π : YL → A× I be the double-branched covering projection, and π 1
2

: π−1(A 1
2
)→ A 1

2

its restriction to the 1
2 level. Then (Σ, α, β ) is a sutured Heegaard diagram for YL , where

• Σ = π−1
1
2

(A 1
2
)

• α = π−1
1
2

(P(cups))

• β = π−1
1
2

(P(caps))

See Figures 3 and 4 along with [6, Sec. 5.3] for more details.

Furthermore, as described in the proof of Proposition 2.24, we obtain a sutured Heegaard
diagram, (Σ̂, α̂, β̂ ), for YL̂ = Σ(DA × I,L) by gluing in disks DX1 ,DX2 to two of the
boundary components. Let

α̂ = {α̂1, . . . , α̂t, α̂t+1, . . . α̂t+n}, and

β̂ = {β̂1, . . . , β̂t, β̂t+1, . . . , β̂t+n}
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Figure 4: A sutured Heegaard diagram, (Σ, α, β ), for YL , where L is as in Figure 3. The dotted
lines are identified as labeled, and the colored circles are isotopic to the preimages of the colored
arcs in Figure 3.

be labeled as in Figure 5.

Since

αi ∩ βj = α̂i ∩ β̂j =

{
{(v+)i, (v−)i} if i = j
∅ otherwise,

we obtain the following set of Z2 –module generators for both CFH(YL) and CFH(YL̂):

{(v±)1 ⊗ · · · ⊗ (v±)t+n}.

Furthermore, as in the proof of [6, Lem. 5.18], H◦1 (YL̂, ∂YL̂) has a basis whose elements,
{[Ki]}t+n

i=1 , are in one-to-one correspondence with the components, {Ki}t+n
i=1 , of L, and the

H◦1 -action on the filtered complex, CFH(YL̂) is extended linearly from the following action
on generators:

Let xi ∈ {(v+)i, (v−)i} for all i ∈ {1, . . . , t + n}, then

[Kj] · (x1 ⊗ . . .⊗ xt+n) :=
{

x1 ⊗ . . .⊗ (v−)j ⊗ . . .⊗ xt+n if xj = (v+)j, and
0 if xj = (v−)j.

Recalling that if x, y ∈ Tα̂ ∩ Tβ̂ and φ ∈ π2(x, y), the relative A grading is given by:

A(x)− A(y) = nX(φ)

where

nX(φ) :=
2∑

i=1

nXi(φ),

there are two cases to consider.
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(v+)1

α̂4

α̂1 α̂2 α̂3 β̂1 β̂3β̂2

β̂5

β̂4

(v−)1

α̂5

Figure 5: A sutured Heegaard diagram for YL̂ . The α̂ , β̂ curves are numbered in increasing order
from left to right (resp., from inside to outside) in the Ltriv (resp., the Lnon ) section of Σ̂ .

Case 1: Kj ∈ Ltriv

Let xi ∈ {(v+)i, (v−)i} for all i = 1, . . . , t + n. [Kj] acts non-trivially on a generator, x, iff
it is of the form:

x = x1 ⊗ . . .⊗ (v+)j ⊗ . . .⊗ xt+n,

in which case:
[Kj] · (x) = x1 ⊗ . . .⊗ (v−)j ⊗ . . .⊗ xt+n.

Since x and [Kj]·(x) are connected by a domain, φ, as in Figure 6, and φ satisfies nX(φ) = 0,
we conclude that

A(x)− A([Kj] · x) = 0,

as desired.

Case 2: Kj ∈ Lnon

As in Case 1, above, [Kj] acts non-trivially on a generator, x, iff it is of the form:

x = x1 ⊗ . . .⊗ (v+)j ⊗ . . .⊗ xt+n,

in which case:
[Kj] · (x) = x1 ⊗ . . .⊗ (v−)j ⊗ . . .⊗ xt+n.

When Kj ∈ Lnon , then x and [Kj] · (x) are connected by a domain, φ, as in Figure 7. Since
φ satisfies nX(φ) = 1,

A(x)− A([Kj] · x) = 1,
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Figure 6: The shaded region represents a domain, φ , connecting two generators, x and y, in
(Σ̂, α̂, β̂ ). Here x is represented by the square intersection point(s), while y agrees with x everywhere
except at α̂2 ∩ β̂2 , where y is represented by the circular intersection point.
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Figure 7: The shaded region represents a domain, φ , connecting two generators, x and y, in
(Σ̂, α̂, β̂ ). Here, x is represented by the square intersection point(s), while y agrees with x every-
where except at α̂5 ∩ β̂5 , where y is represented by the circular intersection point.
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as desired.

We conclude that, with respect to this choice of sutured Heegaard diagram,

CFH(YL) ∼= VH(L)

as relatively (A,M) bigraded Z2 modules, and, hence, that SFH(YL) ∼= VH(L) as relatively
(A,M) bigraded modules, since:

2t+n = rk(CFH(YL)) ≥ rk(SFH(YL)) ≥ rk(SFH(YL̂)) = 2t+n.

Note that the second inequality above arises because CFH(YL) can be identified as the
associated graded complex of the filtered complex CFH(YL̂), as in Proposition 2.24.

To see that the absolute A and M gradings on SFH(YL) are as stated, it suffices to show that
the extremal generator,

v+ := (v+)1 ⊗ . . .⊗ (v+)t+n,

has bigrading

(A,M) =

(
n− p(L)

2
,

t + n− p(L)
2

)
.

To see that A(v+) is as claimed, use Proposition 2.24, combined with the symmetry prop-
erties of knot Floer homology with extra basepoint pairs [17, Sec. 3.5], [21, Sec. 8], [14,
Lem. 2.12], which tell us that for a multiply-pointed Heegaard diagram associated to an `
component link K = q`i=1Ki for which there are ni (O,X) basepoint pairs associated to the
link component Ki , we have:(

ĤFK(Y,K)⊗Θ⊗s
)

(a,m)
∼=
(

ĤFK(Y,K)⊗Θ⊗s
)

(−a−s,m−2a−s)

where s :=
∑`

i=1(ni−1), Θ is the bigraded Z2 vector space generated by θ+, θ− satisfying

(A(θ+),M(θ+)) = (0, 0),

(A(θ−),M(θ−)) = (−1,−1),

and (ĤFK(Y,K)⊗Θ⊗s)(a,m) denotes the summand in (A,M) bigrading (a,m).

Since the above symmetry in the case of interest (Y = Σ(S3,L), K = B̃) identifies v+ with
v− = (v+)1 ⊗ . . . (v+)t ⊗ (v−)t+1 ⊗ . . .⊗ (v−)t+n , we obtain

A(v+)− A(v−) = A(v+)−
(
−A(v+)− s

)
n = 2A(v+) + s

n− s
2

= A(v+)

n− p(L)
2

= A(v+),



Khovanov and Heegaard Floer homology 25

as desired.

To see that

M(v+) =
t + n− p(L)

2
,

we use the fact that
Σ(S3,L) = #(t+n)−1(S1 × S2),

combined with the fact that, by convention, the knot Floer homology of a multi-component
link in Y comes from the “knotification” of the link [17, Sec. 2.1] in Y#(` − 1)S1 × S2 .
Using the Heegaard Floer Künneth principle ([18, Thm. 1.5]) and the fact (cf. [19, Subsec.
9.1]) that ĤF(S1 × S2) is the free Z2 –module on generators {w+,w−} with

M(w±) = ±1
2

implies that

M(v+) =
t + n− p(L)

2
,

as desired.

The following proposition establishes the equivalence of the Khovanov and sutured Floer
“functors” on resolved links, L ⊂ A× I . In what follows,

• V(L) (resp., VH(L)) denotes the (f , q)–bigraded (resp., (A,M)–bigraded) vector
space of Definition 2.14 (resp., Definition 2.27).

• For resolved links L′,L′′ ⊂ A× I connected by a saddle cobordism S , GFS denotes
the map

SFH(YL′)→ SFH(YL′′)

induced by performing surgery on the corresponding knot in YL′ as in [6, Sec. 4].

• GVS denotes the f –grading-preserving part of the map induced by the saddle-
cobordism S , as in Definitions 2.15 and 2.16.

Proposition 2.29 For each resolved link

L = (Ltriv q Lnon) ⊂ A× I

there is a canonical isomorphism

ΨL : V(L)→ SFH(YL).
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Furthermore, this isomorphism is natural in the sense that if L′,L′′ ⊂ A × I are resolved
links and S : L′ → L′′ is a saddle cobordism, the following diagram commutes:

V(L′) GVS−−−−→ V(L′′)

ψL′

y yψL′′

SFH(YL′)
GFS−−−−→ SFH(YL′′)

Proof Let L ⊂ A×I be any resolved link. Proposition 2.28 tells us that SFH(YL) ∼= VH(L),
so the canonical isomorphism, ΨL : V(L) → SFH(YL) for any resolved L ⊂ A × I is the
one induced by the canonical isomorphism Z(L)→ ZH(L).

Now denote by L̂ the image of L under the inclusion i : A× I −→ DA × I . Then L̂ is an
admissible, 0–balanced, resolved tangle in DA× I , in the sense of [6, Defn. 5.1-5.5], so [6,
Prop. 5.17] gives us an isomorphism

ψL̂ : V(L̂) −→ SFH(YL̂)

such that if L′ , L′′ are resolved links in A× I connected by a saddle cobordism S , and L̂′ ,
L̂′′ their induced images in DA × I , then the following diagram commutes:

V(L̂′) VS−−−−→ V(L̂′′)

ψL̂′

y yψL̂′′

SFH(YL̂′)
FS−−−−→ SFH(YL̂′′)

Furthermore, for any resolved L ⊂ A × I , V(L̂) ∼= V(L) (resp., SFH(YL̂) ∼= SFH(YL)) as
Z2 vector spaces. In fact, V(L̂) is obtained from V(L) (resp., SFH(YL̂) is obtained from
SFH(YL)) by forgetting the f –grading (resp., A–grading), and the isomorphism ψL̂ agrees
with ΨL subject to this forgetful map. Lastly, given any saddle cobordism S connecting a
resolved link L′ ⊂ A × I to L′′ ⊂ A × I , GVS (resp., GFS ) is the f –grading-preserving
(resp., A–grading-preserving) part of the map VS (resp., FS ) corresponding to the saddle
cobordism connecting L̂′ to L̂′′ .

Thus, to show that
V(L′) GVS−−−−→ V(L′′)

ψL′

y yψL′′

SFH(YL′)
GFS−−−−→ SFH(YL′′)
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is a commutative diagram it suffices to show that for any two f –homogeneous generators
x ∈ V(L′) and y ∈ V(L′′),

f (x) = f (y) ⇔ A(ΨL′(x)) = A(ΨL′′(y)).

But Definitions 2.14 and 2.27 imply that

A(ΨL′(x)) =
f (x)− p(L′)

2
, and

A(ΨL′′(y)) =
f (y)− p(L′′)

2
,

so f gradings agree iff the corresponding A gradings agree. The result follows.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 We proceed exactly as in the proof of [6, Thm. 5.19]. Recall (see
Definition 2.22 and Remark 2.23) that if L ⊂ A × I is a link and L is its mirror, then
Kh∗(L) := V(L), where V(L) is the homology of the cubical complex constructed by

(1) numbering the crossings of a projection, P(L), of L,

(2) forming the associated cube of resolutions whose vertices are the resolved links,
PI(L), described in Section 2.2, arranged so that two vertices I, I ′ are connected by
an edge iff PI(L), P ′I(L) are connected by a saddle cobordism, S ,

(3) assigning to each vertex of the cube the vector space V(PI(L)) and to each edge of
the cube the differential map GVS .

Similarly, using the link surgeries spectral sequence for sutured Floer homology (see [6,
Sec. 4]) associated to the link in YL formed by taking the preimage of simple arcs at each
crossing of the projection P(L) as in [6, Fig. 7], we see that SFH(YL) is the homology of
the filtered cubical complex constructed by proceeding as in steps (1) and (2) above, but in
step (3) assigning the vector space

SFH(YPI (L)) ∼= VH(PI(L))

to each vertex of the cube, assigning the map GFS to each edge of the cube, and assigning
higher polygon maps as in [6, Sec. 4] to higher–dimensional faces of the cube.

The E2 page of this link surgeries spectral sequence is the homology of the chain complex
whose underlying vector space is ⊕

I∈{0,1}`
SFH

(
YPI (L)

)
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and whose differential consists solely of those maps assigned to the edges of the cube.
Proposition 2.29 yields a canonical isomorphism between this chain complex and the chain
complex whose homology is V(L) ∼= Kh∗(L). The result follows.

3 A relationship between annular links and balanced tangles

We close by establishing the relationship between Roberts’ spectral sequence, [28, Prop.
1.1], for annular links (or, more precisely, its reinterpretation in Theorem 2.1) and the
spectral sequence for balanced tangles introduced in [6, Prop. 5.20]. The following is a
direct consequence of [7, Thm. 4.5], which generalizes Juhász’s surface decomposition
theorem, [9, Thm. 1.3], to filtered complexes arising in the context of link surgeries spectral
sequences. See [7] for a more complete discussion of related naturality results.

Theorem 3.1 Let L ⊂ A× I be an isotopy class representative of an annular link admitting
a projection, P(L), and let λ ⊂ A be a properly imbedded oriented arc representing a
nontrivial element of H1(A, ∂A) such that λ intersects P(L) transversely. Let T ⊂ D × I
be the balanced tangle in D× I obtained by decomposing along the surface, λ× I , endowed
with the product orientation.

Then the spectral sequence

Kh∗(T)→ SFH(Σ(D× I,T))

is a direct summand of the spectral sequence

Kh∗(L)→ SFH(Σ(A× I,L)).

Furthermore, the direct summand is trivial if there exists some L′ ⊂ A × I isotopic to L
satisfying

|(λ× I) t L′| � |(λ× I) t L|

Proof of Theorem 3.1 Let

• ~p := (λ × I) t L denote the collection of transverse intersection points of L with
λ× I ,

• S := Σ(λ× I,~p) denote the preimage of λ× I in Σ(A× I,L), and

• L denote the link in Σ(A × I,L) obtained as the preimage of trivial arcs at each
crossing of L as in [6, Fig. 7].
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Then S,L ⊂ Σ(A × I,L) satisfy the assumptions of [7, Thm. 4.5]. Furthermore, the
decomposition of Σ(A × I,L) along S is precisely the sutured manifold Σ(D × I,T),
and L′ ⊂ Σ(D × I,T), the image of L in the decomposed manifold, is precisely the link
in Σ(D × I,T) obtained as the preimage of the trivial arcs associated to the crossings of
P(T) ⊂ D.

Now [7, Thm. 4.5] implies that the filtered complex, X(L′), associated to L′ is a direct
summand of the filtered complex, X(L), associated to L . But X(L′) is precisely the fil-
tered complex whose associated spectral sequence has E2 term Kh∗(T) and converges to
SFH(Σ(D× I,T)), while the spectral sequence associated to X(L) has E2 term Kh∗(L) and
converges to SFH(Σ(A× I,L)), as desired.

Furthermore, the direct summand, X(L′) ≤ X(L), is trivial if the intersection of λ× I with
L is non-minimal, since we know that if |L t (λ× I)| is non-minimal among isotopy class
representatives of L, then all resolutions of T backtrack, in the sense of [6, Defn. 5.8], so
the associated chain complex for Kh(T) has no generators, hence the entire filtered complex,
X(L′), and its associated spectral sequence are trivial.
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[22] Peter Ozsváth and Zoltán Szabó. On knot Floer homology and lens space surgeries. Topology,
44(6):1281–1300, 2005.
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