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A REMARK ON THE TOPOLOGY OF (n, n) SPRINGER

VARIETIES

STEPHAN M. WEHRLI

Abstract. We prove a conjecture of Khovanov [Kho04] which identifies the topo-
logical space underlying the Springer variety of complete flags in C2n stabilized
by a fixed nilpotent operator with two Jordan blocks of size n.

1. Introduction

Let En be a complex vector space of dimension 2n and zn : En → En a nilpotent
linear endomorphism with two nilpotent Jordan blocks, each of them of size n. A
complete flag in En is an ascending sequence of linear subspaces 0  L1  L2  
. . .  L2n = En. The (n, n) Springer variety is the set

Bn,n := {complete flags in En stabilized by zn},

where a complete flag is said to be stabilized by zn if each of the subspaces Lj is
stable under zn, i.e. if znLj ⊂ Lj for all j ∈ {1, . . . , 2n}.

It is known that Bn,n is a complex projective variety of (complex) dimension
n, and that the irreducible components of Bn,n are topologically trivial (but al-
gebraically non-trivial) iterated P1-bundles over a point (where P1 is the complex
projective line, i.e., topologically, P1 ∼= S2). Moreover, a result of Fung [Fun02]
(going back to earlier work of Spaltenstein [Spa76] and Vargas [Var79]), describes
the irreducible components of Bn,n explicitly in terms of crossingless matchings of
2n points:

Proposition 1.1 (Fung). The irreducible components of Bn,n are parametrized by

crossingless matchings of 2n points. Furthermore, the irreducible component Ka

associated to a ∈ Bn can be described explicitly, as follows:

Ka = {(L1, . . . , L2n) ∈ Bn,n : Lsa(j) = z−da(j)
n Lj−1 ∀j ∈ Oa}

Here, Bn is the set of all crossingless matchings of 2n points. Elements of Bn

can be thought of as diagrams consisting of n disjoint, nested cups, as in Figure 1.
Equivalently, elements of Bn are partitions of the set {1, 2, . . . , 2n} into pairs, such
that there is no quadruple i < j < k < l with (i, k) and (j, l) paired. For an element
a ∈ Bn, we denote by Oa the set of all i appearing in a pair (i, j) ∈ a with i < j; and
if (i, j) ∈ a is a pair with i < j, then we define sa(i) := j and da(i) := (sa(i)−i+1)/2.
Note that da(i) is always an integer because sa(i)− i−1 is twice the number of cups
that are contained strictly inside the cup with endpoints i and sa(i).
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Figure 1. Crossingless matching {(1, 4), (2, 3)}.

In [Kho04], Khovanov proved that the integer cohomology ring of Bn,n is iso-
morphic to the center of the ring Hn =

⊕
a,b∈Bn b(H

n)a, defined in [Kho02]. To
show this, Khovanov first proved that Bn,n has the same integer cohomology ring

as a topological space S̃ ⊂ (P1)2n = P1 × . . . × P1 (2n factors), defined by S̃ :=⋃
a∈Bn Sa ⊂ (P1)2n, where

Sa := {(l1, . . . , l2n) ∈ (P1)2n : lj = lsa(j) ∀j ∈ Oa}.

The goal of this paper is to show the following stronger statement, which was also
conjectured by Khovanov ([Kho04, Conjecture 1]):

Theorem 1.2. Bn,n and S̃ are homeomorphic.

Our proof of Theorem 1.2 is based on Proposition 1.1 and on the observation of
Cautis and Kamnitzer [CK07] that Bn,n can be embedded into a (smooth) complex
projective variety Y2n diffeomorphic to (P1)2n. Besides the diffeomorphism

φ2n : Y2n −→ (P1)2n

of Cautis and Kamnitzer, whose definition we review in Section 2, we will need an
involutive diffeomorphism

I2n : (P1)2n −→ (P1)2n

defined by I2n(l1, . . . , l2n) := (l′1, . . . , l
′
2n) with

l′j :=

{
lj if j is odd,

l⊥j if j is even,

where l⊥j ⊂ C2 is the orthogonal complement (w.r.t. the standard hermitian product

on C2) of the complex line lj ⊂ C
2 (or, equivalently, the antipode of the point lj ∈

P1 ∼= S2). In Section 3, we prove the following result, which implies Theorem 1.2:

Proposition 1.3. The diffeomorphism I2n ◦φ2n maps Ka ⊂ Y2n to Sa ⊂ (P1)2n for

all a ∈ Bn, and hence Bn,n to S̃.

The author had the main idea for this article in Spring 2007 while he was preparing
a talk for an informal seminar on link homology and coherent sheaves organized by
Mikhail Khovanov at Columbia University. In a recent article [RT08], Russell and
Tymoczko studied an action of the symmetric group S2n on the cohomology ring of
Bn,n. In this context, they also proved Theorem 1.2. Although our proof is similar
to theirs, our work is completely independent.

Acknowledgments. The author would like to thank Mikhail Khovanov for helpful
conversations and for pointing him to the papers [CK07] and [Fun02]. The author
was supported by fellowships of the Swiss National Science Foundation and of the
Fondation Sciences Mathématiques de Paris.
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2. Diffeomorphism φm

In the following, E is the complex vector space E := CN ⊕CN (for some N > 0),
and z : E → E is the nilpotent linear endomorphism given by zej := ej−1 and
zfj := fj−1 for all j ∈ {2, . . . , N}, and ze1 := zf1 := 0, where {e1, . . . , eN} is the
standard basis for the first CN summand in E, and {f1, . . . , fN} is the standard
basis of the second CN summand in E. For n ≤ N , we denote by En ⊂ E the
subspace En := Cn ⊕ Cn = span(e1, . . . , en) ⊕ span(f1, . . . , fn), or equivalently,
En = z−n(0) = ker(zn) = im(zN−n), and we denote by 〈., .〉E the standard hermitian
product on E, satisfying

〈ei, ej〉E := 〈fi, fj〉E := δi,j , 〈ei, fj〉E := 0,

for all i, j ∈ {1, . . . , N}, and by 〈., .〉 the standard hermitian product on C2, satisfying

〈e, e〉 := 〈f, f〉 := 1 , 〈e, f〉 := 0,

where {e, f} is the standard basis of C2.

2.1. Stable subspaces. A subspace W ⊂ E is called stable under z if it satisfies
zW ⊂ W . Note that this condition also implies z2W ⊂ zW and W ⊂ z−1W , so
if W is stable under z, then so are its images and preimages under z. Moreover,
if a stable subspace W satisfies W ⊂ im(z), then z : z−1W → W is surjective and
therefore

dim((z−1W ) ∩W⊥) = dim(z−1W/W ) = dim(z−1W ) − dim(W ) = dim(E1) = 2

where we have used that z−1W ⊃ z−1(0) = ker(z) = E1. Let C : E → C2 be
the linear map defined by C(ej) := e and C(fj) := f for all j ∈ {1, . . . , N}. The
following lemma is taken from [CK07, Lemma 2.2]:

Lemma 2.1. If W ⊂ E is stable under z and contained in im(z), then the restriction

C|(z−1W )∩W⊥ : (z−1W ) ∩W⊥ → C2 is an isomotric isomorphism.

For the convenience of the reader, we recall the proof given in [CK07].

Proof. Since (z−1W )∩W⊥ is two-dimensional, it suffices to show that the restriction
of C to (z−1W ) ∩ W⊥ is an isometry. For this, let v,w ∈ (z−1W ) ∩ W⊥ with
v = v1 + . . .+ vN and w = w1 + . . .+wN where vj , wj ∈ span(ej , fj). Then we have

〈v,w〉E =
∑

i

〈vi, wi〉E =
∑

i

〈C(vi), C(wi)〉

and
〈C(v), C(w)〉 = 〈

∑

i

C(vi),
∑

j

C(wj)〉 =
∑

i,j

〈C(vi), C(wj)〉.

To prove that the restriction of C to (zW )∩W⊥ is an isometry, i.e. that 〈v,w〉E =
〈C(v), C(w)〉, we must therefore show

∑
i6=j〈C(vi), C(wj)〉 = 0. We will actually

prove a stronger statement, namely that
∑

i=j+k〈C(vi), C(wj)〉 = 0 for each fixed

k 6= 0. Assuming k > 0 (the case k < 0 being similar), we can write
∑

i=j+k

〈C(vi), C(wj)〉 =
∑

i=j+k

〈vi, wj〉E = 〈v, zkw〉E ,
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and since v,w ∈ (z−1W )∩W⊥, we have v ∈W⊥ and zkw ∈ zk(z−1W ) ⊂ zk−1W ⊂
W , whence 〈v, zkw〉E = 0, as desired. �

Lemma 2.2. Let W ⊂ E be a stable subspace such that ker(z) ⊂ W ⊂ im(z).
Then z maps W⊥∩ z−1W isomorphically to (zW )⊥∩W , and the following diagram

commutes:

(z−1W ) ∩W⊥

C
&&LLLLLLLLLLL

z // W ∩ (zW )⊥

C
yyssssssssss

C2

Proof. It is apparent that W ∩ (zW )⊥ ∼= W/(zW ) is two-dimensional, and, by the
previous lemma, C restricts to an isomorphism on (z−1W ) ∩W⊥, so we only need
to prove that z maps elements of (z−1W ) ∩W⊥ to elements of W ∩ (zW )⊥, and
that the above diagram commutes. Thus, let v ∈ (z−1W ) ∩W⊥, and write v as

v = v1 + . . . + vN

for vj ∈ span(ej , fj). Since v ∈ W⊥ and W ⊃ ker(z) = E1 = span(e1, f1), we have
v1 = 0, and since C(zvj) = C(vj) for all j ≥ 2, this implies C(zv) = C(v). We clearly
have zv ∈ W (because v ∈ z−1W ), so the only thing that remains to be shown is
that zv ∈ (zW )⊥. For this, consider any w ∈W and write w as w = w1 + . . .+wN
for wj ∈ span(ej , fj). Since 〈zvj , zwj〉E = 〈vj , wj〉E for all j ≥ 2, and since v1 = 0

and v ∈W⊥, we see that 〈zv, zw〉E = 〈v,w〉E = 0, and thus zv ∈ (zW )⊥. �

2.2. Ym and φm. For m ≤ N , Cautis and Kamnitzer [CK07, Section 2] define a
complex projective variety Ym,

Ym := {(L1, . . . , Lm) ∈ Fm : dim(Lj) = j and zLj ⊂ Lj ∀j},

where Fm is the set of all partial flags 0  L1  L2  . . .  Lm ⊂ E. Note
that the conditions zLj ⊂ Lj and zLj−1 ⊂ Lj−1 imply that z descends to an
endomorphism of Lj/Lj−1, and since Lj/Lj−1 is one-dimensional and z nilpotent,
this endomorphism must be the zero-map, so the spaces Lj in (L1, . . . , Lm) ∈ Ym
actually satisfy the seemingly stronger condition zLj ⊂ Lj−1. In particular, Lm ⊂
z−1Lm−1 ⊂ z−2Lm−2 ⊂ . . . ⊂ z−m(0) = ker(zm) = Em, so as far as the definition of
Ym is concerned, we could restrict ourselves to the space Em = Cm⊕Cm instead of
working with the bigger space E = CN ⊕ CN . In particular, Ym is independent of
the choice of N (as long as N ≥ m).

Note also that the assignment (L1, . . . , Lm−1, Lm) 7→ (L1, . . . , Lm−1) defines a
P1-bundle Ym → Ym−1. Indeed, a point in the fiber above (L1, . . . , Lm−1) ∈ Ym−1 is
obtained from (L1, . . . , Lm−1) by choosing an Lm such that Lm−1 ⊂ Lm ⊂ z−1Lm−1,
and since z−1Lm−1/Lm−1 is two-dimensional, we have a P1 worth of choices. De-
noting by L⊥

j−1 the orthogonal complement of Lj−1 w.r.t. 〈., .〉E , we can identify

z−1Lm−1/Lm−1 with (z−1Lm−1) ∩ L
⊥
m−1, and by Lemma 2.1, the map C : E → C2

identifies (z−1Lm−1)∩L
⊥
m−1 with C2. Therefore, the P1-bundle Ym → Ym−1 is topo-

logically trivial (i.e., topologically, Ym ∼= P1×Ym−1), and Cautis and Kamnitzer use
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this to define a diffeomorphism

φm : Ym −→ (P1)m

by φm(L1, . . . , Lm) := (C(L1), C(L2 ∩ L
⊥
1 ), C(L3 ∩ L

⊥
2 ), . . . , C(Lm ∩ L⊥

m−1)).

2.3. Subvarieties Xm,i ⊂ Ym. For each i ∈ {1, . . . ,m− 1}, Cautis and Kamnitzer
[CK07, Section 2] define a subvariety Xm,i ⊂ Ym,

Xm,i := {(L1, . . . , Lm) ∈ Ym : Li+1 = z−1(Li−1)},

together with a surjection
qm,i : Xm,i −→ Ym−2,

given by qm,i(L1, . . . , Lm) := (L1, . . . , Li−1, zLi+2, . . . , zLm) ∈ Ym−2. The following
(easy) Lemma was shown in [CK07, Theorem 2.1].

Lemma 2.3. The map φm : Ym → (P1)m takes Xi,m diffeomorphically to

Am,i := {(l1, . . . , lm) ∈ (P1)m : li+1 = l⊥i },

where l⊥i denotes the orthogonal complement of the line li ⊂ C
2 w.r.t. 〈., .〉.

Let fm,i : (P1)m → (P1)m−2 be the forgetful map sending (l1, . . . , lm) ∈ (P1)m to
(l1, . . . , li−1, li+2, . . . , lm) ∈ (P1)m−2, and let

gm,i : Am,i −→ (P1)m−2

be the restriction of fm,i to Am,i.

Lemma 2.4. Let ψm,i : Xm,i → Am,i be the restriction of φm to Xm,i ⊂ Ym. Then

the following diagram commutes:

Xm,i

qm,i
//

ψm,i

��

Ym−2

φm−2

��

Am,i
gm,i

// (P1)m−2

Proof. It is straightforward to check that gm,i ◦ψm maps (L1, . . . , Lm) ∈ Xm,i to the
tuple (l′1, . . . , l

′
m−2) ∈ (P1)m−2, where

l′j =

{
C(Lj ∩ L

⊥
j−1) if j < i,

C(Lj+2 ∩ L
⊥
j+1) if j ≥ i,

and φm−2 ◦ qm,i maps (L1, . . . , Lm) ∈ Xm,i to the tuple (l′′1 , . . . , l
′′
m−2) ∈ (P1)m−2,

where

l′′j =

{
C(Lj ∩ L

⊥
j−1) if j < i,

C(zLj+2 ∩ (zLj+1)
⊥) if j ≥ i.

To prove gm,i ◦ ψm = φm−2 ◦ qm,i, we must therefore show that

C(Lj+2 ∩ L
⊥
j+1) = C(zLj+2 ∩ (zLj+1)

⊥)

holds for all j ≥ i. But if j ≥ i, then Lj+1 ⊃ Li+1 = z−1Li−1 ⊃ z−1(0) = ker(z),
and (by increasing N if necessary) we can also assume that Lj+1 ⊂ im(z). Thus,
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Lemma 2.2 applied to W := Lj+1 tells us that z maps (z−1W )∩W⊥ to W ∩ (zW )⊥,

and that C(v) = C(zv) for all v ∈ (z−1W )∩W⊥. Now the equality C(Lj+2∩L
⊥
j+1) =

C(zLj+2 ∩ (zLj+1)
⊥) follows because z maps Lj+2 ∩ L⊥

j+1 ⊂ (z−1W ) ∩ W⊥ to

zLj+2 ∩ (zLj+1)
⊥ ⊂W ∩ (zW )⊥. �

3. Proof of Proposition 1.3

In this section, we use the same notations as before, except that we now assume
m = 2n (and hence N ≥ 2n). Then the Springer variety Bn,n is naturally contained
in Y2n as

Bn,n := {(L1, . . . , L2n) ∈ Y2n : L2n = En},

where En := span(e1, . . . , en) ⊕ span(f1, . . . , fn), and Proposition 1.1 tells us that
the irreducible component Ka ⊂ Bn,n ⊂ Y2n associated to the crossingless matching
a ∈ Bn is equal to the set of all (L1, . . . , L2n) ∈ Y2n satisfying

Lsa(j) = z−da(j)
n Lj−1

for all j ∈ Oa, where zn : En → En is the restriction of z to En. A priori, z
−da(j)
n Lj−1

could a priori be a proper subspace of z−da(j)Lj−1 (because z−da(j)Lj−1 might not be

contained in En), but it turns out that z
−da(j)
n Lj−1 is equal to z−da(j)Lj−1 whenever

(L1, . . . , L2n) ∈ Ka. In fact, we have:

Lemma 3.1. Ka = {(L1, . . . , L2n) ∈ Y2n : Lsa(j) = z−da(j)Lj−1 ∀j ∈ Oa}.

Proof. Suppose (L1, . . . , L2n) is contained in Ka. Then the condition z
−da(j)
n Lj−1 =

Lsa(j), combined with dim(Lj−1) = j− 1, dim(Lsa(j)) = sa(j), and dim(ker(z)) = 2,
implies

dim(z−da(j)Lj−1) = 2da(j) + dim(Lj−1) = 2da(j) + j − 1 = sa(j)

= dim(Lsa(j)) = dim(z−da(j)
n Lj−1),

and thus z−da(j)Lj−1 = z
−da(j)
n Lj−1. Conversely, suppose (L1, . . . , L2n) ∈ Y2n sat-

isfies z−da(j)Lj−1 = Lsa(j) for all j ∈ Oa. Then we must show that L2n = En. To
prove this, let us call a pair (k, l) ∈ a outermost if there is no pair (k′, l′) ∈ a
such that k′ < k < l < l′. Then the outermost pairs in a form a sequence
(k1, l1), (k2, l2), . . . , (kr, lr) ∈ a such that k1 = 1, lr = 2n, and ks+1 = ls + 1 for

all s < r, and da(k1) + . . .+ da(kr) = n. Using z−da(j)Lj−1 = Lsa(j) successively for
j ∈ {kr, kr−1, . . . , k1} ⊂ Oa, we obtain

L2n = z−da(kr)Llr−1
= z−da(kr)z−da(kr−1)Llr−2

= . . . = z−n(0) = En,

as desired. �

From now on, a ∈ Bn is a fixed crossingless matching of 2n points, and i is an
index such that sa(i) = i + 1, i.e., such that (i, i + 1) is a pair in a. We denote
by a′ ∈ Bn−1 the crossingless matching obtained from a by removing the pair
(i, i + 1) (and renumbering indices j ≥ i+ 2 such that j ∈ {i + 2, . . . , 2n} becomes
j − 2 ∈ {i, . . . , 2n − 2}), and by q the map q2n,i : X2n,i → Y2n−2, defined as in the
previous section.
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Lemma 3.2. Ka = q−1(Ka′).

Proof. Since sa(i) = i + 1 and da(i) = (sa(i) − i + 1)/2 = 1, the equality Li+1 =
z−1Li−1 holds for each (L1, . . . , L2n) ∈ Ka, and thus Ka ⊂ Y2n is contained in X2n,i.
It remains to show that an element (L1, . . . , L2n) ∈ X2n,i satisfies the conditions

Lsaj = z−da(j)Lj−1 for all j ∈ Oa \ {i} if and only if the element (L′
1, . . . , L

′
2n−2) :=

q(L1, . . . , L2n) = (L1, . . . , Li−1, zLi+2, . . . , zL2n) ∈ Y2n−2 satisfies the conditions

L′
sa′(j)

= z−da′ (j)L′
j−1 for all j ∈ Oa′ . We divide the proof into three cases.

Case 1. If j < sa(j) < i, then the equivalence

Lsa(j) = z−da(j)Lj−1 ⇐⇒ L′
sa′(j)

= z−da′ (j)L′
j−1

is obvious because the quantities appearing on either side of ⇐⇒ are identical.
Case 2. If j < i < i + 1 < sa(j), then L′

j−1 = Lj−1, L
′
sa′(j)

= zLsa(j), and

da′(j) = da(j) − 1, so we must show:

Lsa(j) = z−da(j)Lj−1 ⇐⇒ zLsa(j) = z−da(j)+1Lj−1

But this follows simply by applying z (resp., z−1) to the equalities on either side of
⇐⇒, and observing that z−1(zLsa(j)) = Lsa(j) (because Lsa(j) ⊃ Li+1 = z−1Li−1 ⊃

z−1(0) = ker(z)), and that z(z−da(j)Lj−1) = z−da(j)+1Lj−1 (because, by increasing

N if necessary, we may assume z−da(j)+1Lj−1 ⊂ im(z)).
Case 3. If i + 1 < j < sa(j), then L′

j−3 = zLj−1, Lsa′(j−2) = zLsa(j), and

da′(j − 2) = da(j), so we must show:

Lsa(j) = z−da(j)Lj−1 ⇐⇒ zLsa(j) = z−da(j)zLj−1

As in Case 2, this follows by applying z (resp., z−1) to the equalities on either side
of ⇐⇒. �

Note that (since sa(j) − j is odd for all j ∈ Oa) the involutive diffeomorphism
I2n : (P1)2n → (P1)2n defined in the introduction exchanges the subset Sa ⊂ (P1)2n

with the subset

Ta := {(l1, . . . , l2n) ∈ (P1)2n : lsa(j) = l⊥j ∀j ∈ Oa} ⊂ (P1)2n

To prove Proposition 1.3, we must therefore show that φ2n maps Ka to Ta for all
a ∈ Bn. We will need the following lemma, in which a, i and a′ are as in the previous
lemma, and g denotes the map g2n,i : A2n,i → (P1)2n−2, defined as in the previous
section.

Lemma 3.3. Ta = g−1(Ta′).

Proof. This follows directly from the definitions of g, A2n,i, Ta and Ta′ . �

We are now ready to prove Proposition 1.3.

Proof of Proposition 1.3. Induction on n. The case n = 1 is trivial because the only
crossingless matching of 2 points is a1 := {(1, 2)}, and φ2 : Y2 → P1 × P1 maps
B1,1 = Ka1 = X2,1 ⊂ Y2 diffeomorphically to Ta1 = A2,1 ⊂ P1 × P1.

Thus, let n > 1, and suppose we have already proven the proposition for n − 1.
Let a ∈ Bn. Then there is an i ∈ {1, . . . , 2n − 1} such that sa(i) = i+ 1, i.e., such
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that (i, i + 1) ∈ a. As above, we denote by a′ ∈ Bn−1 the crossingless matching
obtained from a by removing the pair (i, i+ 1) (and renumbering all j ≥ i+ 2), and
by q (resp., g) the map q2n,i (resp., g2n,i). By induction, we know that φ2n−2 maps
Ka′ to Ta′ , so Lemma 2.4 gives us the following commutative diagram:

q−1(Ka′)

ψ2n,i

��

� � // X2n,i
q

//

ψ2n,i

��

Y2n−2

φ2n−2

��

Ka′
? _oo

φ2n−2

��

g−1(Ta′)
� � // A2n,i

g
// (P1)2n−2 Ta′? _oo

Hence we get ψ2n,i(q
−1(Ka′)) = g−1(Ta′), and by Lemmas 3.2 and 3.3, this implies

ψ2n,i(Ka) = Ta,

thus completing the inductive step. �
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