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Abstract. Let n ∈ Z+. We provide a short Khovanov homology proof of the following

classical fact: if the closure of an n–strand braid σ is the n–component unlink, then σ is

the trivial braid.

Let Bn denote the n–strand braid group, 1n ∈ Bn the n–strand trivial braid, and Un the
n–component unlink in S3. Denote by σ̂ the closure of σ ∈ Bn, considered as a link in S3.
The following fact first appears in the literature in [2, Thm. 4.1]:

Proposition 1. Let σ ∈ Bn. If σ̂ = Un, then σ = 1n.

The purpose of this note is to provide a short Khovanov homology proof of Proposition
1. Although the classical proof contained in [2] is straightforward, we hope the Khovanov
homology proof will also be of interest, since it suggests ways in which algebraic properties
of Khovanov homology–in particular, its module structure–can give information about braid
dynamics.

It may be of interest to the reader that there is a parallel story–going through the double-
branched cover operation–involving minimal complexity fibered links in connected sums of
copies of S1 × S2.

Explicitly, let Yn denote #n(S1 × S2). For L a fibered link with fiber F , we will abuse
terminology and refer to χ(F ) as the Euler characteristic of L.

Define
Ln := {` ∈ Z+ ` ≤ (n+ 1) and ` ≡ (n+ 1) mod 2}.

Note that for each ` ∈ Ln, it is straightforward to construct a fibered link, L` ⊂ Yn, of Euler
characteristic 1− n. See Figure 1. The monodromy of L` is trivial, and the pair (Yn,L`) is
well-defined up to diffeomorphism.

The following result appears in [11]. Indeed, after the first version of this note appeared,
it was pointed out in [3, Cor. 1.3] that Proposition 2 implies Proposition 1.

Proposition 2. [11, Prf. of Thm. 1.3] Let L` ⊂ Yn be a fibered, `–component link with
` ∈ Ln and Euler characteristic 1 − n. Then the pair (Yn, L`) is diffeomorphic to the pair
(Yn,L`).

It is clear (cf. Lemma 1) that if ` 6∈ Ln, then an `–component link cannot have Euler
characteristic 1− n. It is also clear (cf. Lemma 2) that 1− n is the maximal possible Euler
characteristic among all fibered links in Yn. Informally, Proposition 2 therefore says that
for allowable `, maximal Euler characteristic fibered `–component links in #n(S1 × S2) are
unique up to diffeomorphism.

In Section 2.1 we will give an alternative proof of Proposition 2 that is formally analogous
to the Khovanov homology proof of Proposition 1.

We thank John Baldwin for pointing out that (this proof of) Proposition 2 implies:
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Figure 1. Kirby diagrams of the links L1 (left) and L3 (right) in Y2 :=
#2S1 × S2. The S2’s (boundaries of the feet of 4–dimensional 1–handles)
are identified as labeled, via a reflection in the plane perpendicular to the
straight line joining their centers. The fibered link in each case is drawn
in blue. To construct L` ∈ Yn in general, arrange n pairs of S2’s along
an unknot in S3 so that attaching 2–dimensional one-handles to the disk
bounded by the unknot, via the chosen configuration, forms an oriented
surface with ` boundary components.

Corollary 1. If Y 6∼= Yn is a closed, oriented 3–manifold with the same Heegaard-Floer
module structure as Yn, then Y contains no fibered links of Euler characteristic 1− n.

There is a unique maximal Euler characteristic fibered link in S3 (namely, the unknot)
whose corresponding open book supports the standard tight contact structure. Ken Baker
(cf. [8]) asked the following interesting question:

Question 1. Fix a contact structure, ξ, on a 3–manifold, Y , and let

χξ := max{χ(L) | L is a fibered link whose open book supports ξ}.

Up to diffeomorphism, are there finitely many fibered links L supporting ξ with χ(L) = χξ?

Proposition 2 tells us that for the standard tight contact structure on Yn the answer is
yes.

Acknowledgements: We thank Ken Baker, John Baldwin, Rob Kirby, Tony Licata, and
Danny Ruberman for interesting conversations and Joan Birman and Bill Menasco for a
useful e-mail correspondence. We are especially grateful to Ian Biringer for telling us
about Hopfian groups, to Matt Hedden for pointing out that Proposition 2 appears in [11],
and to Tim Cochran for making us aware that historical references to Proposition 1 in the
literature appear under the slogan, “Milnor’s invariants detect the trivial braid.”

1. Khovanov Homology Proof of Proposition 1

Proof of Proposition 1. Choose a diagram, D(σ̂), for σ̂ obtained as the closure of a diagram
for σ, and mark the n points on the diagram corresponding to the intersection with the
closure arc. Recall that the (F = Z/2Z) Khovanov homology, Kh(σ̂), of σ̂ is an invariant
of the isotopy class of σ̂ ⊂ S3 that takes the form of a bigraded vector space over F. Since
we have also chosen a basepoint on each of the n link components, [5, Prop. 1] tells us that
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Kh(σ̂) inherits the structure of a module over the ring

An := F[x1, . . . , xn]/(x21, . . . , x
2
n)

as follows.
Associated to the diagram of σ̂ is a cube of resolutions whose vertices are in one-to-

one correspondence with complete resolutions (i.e., Kauffman states) of the diagram. The
basis elements (generators) of the underlying vector space of the Khovanov chain complex,
CKh(D(σ̂)), are, in turn, in one-to-one correspondence with markings of the components of
each resolution with either a 1 or an x (i.e., enhanced Kauffman states).

Let Ibraid be the unique “braid-like” complete resolution of D(σ̂), and denote by Ψ+

(resp., Ψ−) the basis element 1⊗ . . .⊗ 1 (resp., x⊗ . . .⊗ x) in the vector space associated
to Ibraid. Ψ− is a cycle, hence represents an element in Kh(σ̂). Indeed, [Ψ−] ∈ Kh(σ̂) is
precisely Plamenevskaya’s invariant [14] of the transverse isotopy class of the transverse link
represented by σ̂.

We are now ready to understand the An structure induced by the n points p1, . . . , pn.
For each complete resolution, I, choose a numbering of its `I connected components, and
let v1 ⊗ . . . ⊗ v`I represent the Khovanov generator whose jth component in I is marked
with vj ∈ {1, x}. Suppose pi lies on the kth component of I. Then the action of xi ∈ An is
the F–linear extension of the assignment:

xi · (v1 ⊗ . . .⊗ vk ⊗ . . .⊗ v`I ) := v1 ⊗ . . .⊗ x⊗ . . .⊗ v`I
if vk = 1 and 0 otherwise.

It is straightforward to check that the Khovanov differential commutes with the action
of An, and it is shown in [5] (see also [9], [10]) that the homotopy equivalences associated
to Reidemeister moves respect the An–module structure, and moving a basepoint past a
crossing yields a homotopic map. The homology, Kh(σ̂), therefore inherits the structure of
an An–module, and this An–module structure is an invariant of the link.

With these preliminaries in place, assume that σ̂ = Un. A quick calculation using the
standard diagram of Un tells us that Kh(Un) ∼= An as an An-module. Let θ ∈ CKh(D(σ̂))
be a cycle representing the homology class 1 ∈ Kh(Un) ∼= An.

We now claim that when θ is expressed as a linear combination of the standard Khovanov
generators, the coefficient of Ψ+ must be 1. To see this, note that x1 · · ·xn(θ) represents
the non-zero homology class x1 · · ·xn ∈ Kh(σ̂), but if v is any basis element not equal to
Ψ+, then x1 · · ·xn(v) = 0. We see this immediately for v 6= Ψ+ ∈ Ibraid, and any complete
resolution I 6= Ibraid contains at least one connected component intersecting the closure
arc more than once, hence containing at least two basepoints pi, pj , i 6= j. We conclude
that any basis element v associated to I 6= Ibraid satisfies xixj(v) = 0, hence also satisfies
x1 · · ·xn(v) = 0.

The arguments in the previous paragraph imply that x1 · · ·xn(θ) = x1 · · ·xn(Ψ+) = Ψ−,
so [Ψ−] = x1 · · ·xn ∈ Kh(σ̂). In particular, [Ψ−] 6= 0.

But [1, Prop. 3.1] then implies that σ is right-veering.
Repeat the argument above on m(σ), the mirror of σ, to conclude that σ is also left-

veering. Since the only braid which is both left- and right-veering is the identity braid (cf.
[1, Lem. 3.1]), σ = 1n, as desired.

�

2. Fibred links in #n(S1 × S2)

Recall that Ln := {` ∈ Z+ ` ≤ (n+ 1) and ` ≡ (n+ 1) mod 2}.
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Lemma 1. If an `–component link L has Euler characteristic 1− n, then ` ∈ Ln.

Proof. Let S denote the fiber surface of L, χ(S) its Euler characteristic, and g(S) its genus.
Then χ(S) = 1− n = (2− 2g(S))− `. Since g(S) ∈ Z≥0, we obtain ` ≡ (n+ 1) mod 2 and
` ≤ n+ 1. �

Lemma 2. If L ⊂ Yn is a fibered link, then χ(L) ≤ 1− n.

Proof. Suppose L has ` components, and let S denote the fiber surface of L, and h its
monodromy. H1(S) is free of rank 1−χ(S) = 2g(S)+(`−1). Viewing Yn−L as the mapping
torus of h (cf. Section 2.1), we obtain a corresponding presentation of H1(Yn) ∼= Zn with
1− χ(L) generators, hence 1− χ(L) ≥ n. �

2.1. Heegaard-Floer homology proof of Proposition 2. We begin with some back-
ground on Heegaard-Floer homology.

2.1.1. Heegaard-Floer module. Recall that in [12], Ozsváth-Szabó associate to a closed, ori-

ented 3–manifold Y a graded vector space (for simplicity we work over F = Z/2Z), ĤF (Y ),
which splits over Spinc(Y ), the set of spinc structures on Y :

ĤF (Y ) =
⊕

s∈Spinc(Y )

ĤF (Y, s)

For appropriate choices of symplectic and almost complex structures, ĤF (Y ) is the La-
grangian Floer homology of a natural pair of Lagrangian tori, Tα and Tβ , in the g–fold
symmetric product of a pointed Heegaard surface, (Σ, w), for Y .

ĤF (Y ) can be given the structure of a module over Λ∗(H1(Y ; F)), as described in [12,
Sec. 4.2.5]. Explicitly, let

(Σ, α = {α1, . . . , αg}, β = {β1, . . . , βg}, z)
be a pointed, genus g Heegaard splitting of Y , and consider ζ ∈ H1(Y ; F). Ozsváth-Szabó
define an associated chain map,

Aζ : ĈF (Σ, α, β, z)→ ĈF (Σ, α, β, z),

on the Heegaard-Floer chain complex as follows ([12, Rmk. 4.20]). Let x,y ∈ Tα ∩ Tβ
be generators of the chain complex. Recall that π2(x,y) denotes the set of domains in Σ
representing topological Whitney disks connecting x to y, in the sense of [12, Sec. 2.4]. If
φ ∈ π2(x,y), we follow the notation in [11, Sec. 2.1], letting ∂αφ := (∂φ) ∩ Tα, regarded as
a 1–chain with boundary y − x.

Choose an immersed curve,

γζ ⊂ Σ− {αi ∩ βj}i,j∈{1,...,g},
representing ζ ∈ H1(Y ; F) and define

a(γζ , φ) := #M̂(φ)(γζ · ∂αφ),

where γζ · ∂αφ is the algebraic intersection number of γζ and ∂αφ. Then the chain map
associated to ζ is given by:

Aζ(x) =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y) µ(φ)=1,nw(φ)=0}

a(γζ , φ) · y.

The map Aζ is well-defined (independent of the choice of γ) up to chain homotopy (cf.
[11, Lem. 2.4]).
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2.1.2. Heegaard-Floer contact invariant. We now recall the definition of the Heegaard-Floer
contact invariant [13], following the alternative construction given in [7]. Let ξ be a contact
structure on a closed, connected, oriented 3–manifold Y . Then Giroux tells us [4] that there
exists some fibered link L whose corresponding open book supports ξ. One can then build
a Heegaard diagram for −Y (Y with the opposite orientation) using

• a choice of basis, {a1, . . . , an}, for a page S (of Euler characteristic 1 − n) of the
open book [7, Sec. 3.1], and

• the data of the monodromy, h, of the open book.

Honda-Kazez-Matić then identify a distinguished cycle in the corresponding chain com-

plex, ĈF (−Y ), and prove both that the class it represents in ĤF (−Y ) is invariant of the
choices used in its construction and that it agrees with the contact invariant defined in [13].

We will need the following property of the contact invariant, which follows immediately
from [13, Thm. 1.4] and [6, Thm. 1.1]:

Lemma 3. If L ⊂ Y is a fibered link whose monodromy, h, is not right-veering, then the
Heegaard-Floer contact invariant associated to the contact structure supported by L is 0.

We now proceed to the proof.

Proof of Proposition 2. Let L` ⊂ Yn be an `–component fibered link of Euler characteristic
1− n. Construct a corresponding Heegaard diagram for −Yn as in [7, Sec. 3].

The module structure on ĤF (−Yn) has been computed in [12, Lem. 9.1]. Explicitly,

ĤF (−Yn) ∼= An as a module over

Λ∗(H1(−Yn; F)) ∼= An := F[ζ1, . . . , ζn]/(ζ21 , . . . , ζ
2
n).

In particular, ζ1 · · · ζn 6= 0 ∈ ĤF (−Yn).
We can understand the module action explicitly in our setting as follows. All of our

notation matches [7]. Examine the Honda-Kazez-Matić Heegaard diagram Σ = S1/2 ∪ −S0

associated to the fibered link, L`, and look at the “uninteresting” half, S1/2 ⊂ Σ, where
the n–tuple of intersection points representing the contact class lives. Choose a compatible
dual basis, {γ1, . . . , γn}, of simple closed curves on S1/2 satisfying |ai ∩ γj | = δij . The set
of homology classes, {[γ1], . . . , [γn]}, obtained by viewing the γi as 1–cycles in −Yn, forms
a basis for H1(−Yn; F). Hence, for each i ∈ {1, . . . , n}, the corresponding map on homology
induced by the chain map A[γi] can be identified with ζi ∈ An.

Let θ ∈ ĈF (−Yn) be any cycle representing 1 ∈ ĤF (−Yn). Since ζ1 · · · ζn 6= 0 ∈
ĤF (−Yn), we know that there exists at least one generator y ∈ Tα ∩ Tβ satisfying

〈A[γ1] · · ·A[γn] · θ,y〉 ≡ 1 mod 2.

Associated to such a generator y is an odd number of corresponding Maslov index n
domains in π2(θ,y), each of which can be realized as the sum of n of the Maslov index
1 domains contributing to the chain maps A[γ1], . . . , A[γn]. Consider the local multiplicity
of such a Maslov index n domain, ψ, in the 4 regions adjacent to one of the constituent
intersection points, xi, of the distinguished cycle x = (x1, . . . , xn) representing the contact
class. We know (see Figure 2) that the local multiplicity of ψ in the two regions adjacent to
xi that contain the basepoint, z0, must be 0 and also that the local multiplicity in the region
adjacent to the unique intersection point between γi and ai must be nonzero (hence positive,
since ψ is a sum of domains representing holomorphic disks). Since the fourth region must
have non-negative multiplicity, we conclude that xi must be a corner, of multiplicity at least
one, in the boundary of ψ, implying that xi must be a constituent intersection point of the
generator y.
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Figure 2. The “uninteresting” half of a Honda-Kazez-Matić Heegaard di-
agram associated to a fibered link L2 ⊂ Y3. The right-hand picture is a
close-up of one of the constituent intersection points of the contact class
and restrictions on the local multiplicities of the Maslov index n domain
ψ. The NW, SE domains must have multiplicity 0 since they contain the
basepoint z0. One of the other two domains must have positive multiplicity,
since it is the unique domain intersecting γi.

Since the above argument holds for each of the xi, we conclude that, in fact, y is actually
the distinguished contact class, x, and it follows that (working mod 2) A[γ1] · · ·A[γn] · θ = x.
Therefore,

[A[γ1] · · ·A[γn] · θ] = [x] = ζ1 · · · ζn 6= 0 ∈ ĤF (−Yn),

so the Heegaard-Floer contact invariant associated to the contact structure supported by
L` is nonzero. By Lemma 3, the monodromy, h, of L` is right-veering.

Now consider the mirror of L, i.e., the fibered link L ⊂ −Yn with monodromy h−1. By
running the same argument above, we conclude that the contact invariant associated to the
contact structure supported by the mirror of L is also nonzero. Hence, h−1 is right-veering,
implying that h is left-veering.

But if h is both right- and left-veering, then h is isotopic to the identity mapping class,
and hence (Yn, L`) is diffeomorphic as a pair to (Yn,L`). �
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