AN ELEMENTARY FACT ABOUT UNLINKED BRAID CLOSURES

J. ELISENDA GRIGSBY AND STEPHAN M. WEHRLI

Abstract

Let $n \in \mathbb{Z}^{+}$. We provide a short Khovanov homology proof of the following classical fact: if the closure of an n-strand braid σ is the n-component unlink, then σ is the trivial braid.

Let \mathcal{B}_{n} denote the n-strand braid group, $\mathbb{1}_{n} \in \mathcal{B}_{n}$ the n-strand trivial braid, and U_{n} the n-component unlink in S^{3}. Denote by $\widehat{\sigma}$ the closure of $\sigma \in \mathcal{B}_{n}$, considered as a link in S^{3}. The following fact first appears in the literature in [2, Thm. 4.1]:
Proposition 1. Let $\sigma \in B_{n}$. If $\widehat{\sigma}=U_{n}$, then $\sigma=\mathbb{1}_{n}$.
The purpose of this note is to provide a short Khovanov homology proof of Proposition 1. Although the classical proof contained in [2] is straightforward, we hope the Khovanov homology proof will also be of interest, since it suggests ways in which algebraic properties of Khovanov homology-in particular, its module structure-can give information about braid dynamics.

It may be of interest to the reader that there is a parallel story-going through the doublebranched cover operation-involving minimal complexity fibered links in connected sums of copies of $S^{1} \times S^{2}$.

Explicitly, let Y_{n} denote $\#^{n}\left(S^{1} \times S^{2}\right)$. For L a fibered link with fiber F, we will abuse terminology and refer to $\chi(F)$ as the Euler characteristic of L.

Define

$$
\mathcal{L}_{n}:=\left\{\ell \in \mathbb{Z}^{+} \mid \ell \leq(n+1) \text { and } \ell \equiv(n+1) \quad \bmod 2\right\} .
$$

Note that for each $\ell \in \mathcal{L}_{n}$, it is straightforward to construct a fibered link, $\mathbf{L}_{\ell} \subset Y_{n}$, of Euler characteristic $1-n$. See Figure 1. The monodromy of \mathbf{L}_{ℓ} is trivial, and the pair $\left(Y_{n}, \mathbf{L}_{\ell}\right)$ is well-defined up to diffeomorphism.

The following result appears in [11. Indeed, after the first version of this note appeared, it was pointed out in [3, Cor. 1.3] that Proposition 2 implies Proposition 1
Proposition 2. 11, Prf. of Thm. 1.3] Let $L_{\ell} \subset Y_{n}$ be a fibered, ℓ-component link with $\ell \in \mathcal{L}_{n}$ and Euler characteristic $1-n$. Then the pair $\left(Y_{n}, L_{\ell}\right)$ is diffeomorphic to the pair $\left(Y_{n}, \mathbf{L}_{\ell}\right)$.

It is clear (cf. Lemma 1) that if $\ell \notin \mathcal{L}_{n}$, then an ℓ-component link cannot have Euler characteristic $1-n$. It is also clear (cf. Lemma 2) that $1-n$ is the maximal possible Euler characteristic among all fibered links in Y_{n}. Informally, Proposition 2 therefore says that for allowable ℓ, maximal Euler characteristic fibered ℓ-component links in $\#^{n}\left(S^{1} \times S^{2}\right)$ are unique up to diffeomorphism.

In Section 2.1 we will give an alternative proof of Proposition 2 that is formally analogous to the Khovanov homology proof of Proposition 1 .

We thank John Baldwin for pointing out that (this proof of) Proposition 2 implies:

[^0]

Figure 1. Kirby diagrams of the links \mathbf{L}_{1} (left) and \mathbf{L}_{3} (right) in $Y_{2}:=$ $\#^{2} S^{1} \times S^{2}$. The S^{2} s (boundaries of the feet of 4-dimensional 1-handles) are identified as labeled, via a reflection in the plane perpendicular to the straight line joining their centers. The fibered link in each case is drawn in blue. To construct $\mathbf{L}_{\ell} \in Y_{n}$ in general, arrange n pairs of S^{2},s along an unknot in S^{3} so that attaching 2-dimensional one-handles to the disk bounded by the unknot, via the chosen configuration, forms an oriented surface with ℓ boundary components.

Corollary 1. If $Y \nsubseteq Y_{n}$ is a closed, oriented 3-manifold with the same Heegaard-Floer module structure as Y_{n}, then Y contains no fibered links of Euler characteristic $1-n$.

There is a unique maximal Euler characteristic fibered link in S^{3} (namely, the unknot) whose corresponding open book supports the standard tight contact structure. Ken Baker (cf. [8]) asked the following interesting question:

Question 1. Fix a contact structure, ξ, on a $3-$ manifold, Y, and let

$$
\bar{\chi}_{\xi}:=\max \{\chi(L) \mid L \text { is a fibered link whose open book supports } \xi\} .
$$

Up to diffeomorphism, are there finitely many fibered links L supporting ξ with $\chi(L)=\bar{\chi}_{\xi}$?
Proposition 2 tells us that for the standard tight contact structure on Y_{n} the answer is yes.

Acknowledgements: We thank Ken Baker, John Baldwin, Rob Kirby, Tony Licata, and Danny Ruberman for interesting conversations and Joan Birman and Bill Menasco for a useful e-mail correspondence. We are especially grateful to Ian Biringer for telling us about Hopfian groups, to Matt Hedden for pointing out that Proposition 2 appears in [11, and to Tim Cochran for making us aware that historical references to Proposition 1 in the literature appear under the slogan, "Milnor's invariants detect the trivial braid."

1. Khovanov Homology Proof of Proposition 1

Proof of Proposition 1. Choose a diagram, $D(\widehat{\sigma})$, for $\widehat{\sigma}$ obtained as the closure of a diagram for σ, and mark the n points on the diagram corresponding to the intersection with the closure arc. Recall that the $(\mathbb{F}=\mathbb{Z} / 2 \mathbb{Z})$ Khovanov homology, $\operatorname{Kh}(\widehat{\sigma})$, of $\widehat{\sigma}$ is an invariant of the isotopy class of $\widehat{\sigma} \subset S^{3}$ that takes the form of a bigraded vector space over \mathbb{F}. Since we have also chosen a basepoint on each of the n link components, [5, Prop. 1] tells us that
$\mathrm{Kh}(\widehat{\sigma})$ inherits the structure of a module over the ring

$$
\mathcal{A}_{n}:=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)
$$

as follows.
Associated to the diagram of $\widehat{\sigma}$ is a cube of resolutions whose vertices are in one-toone correspondence with complete resolutions (i.e., Kauffman states) of the diagram. The basis elements (generators) of the underlying vector space of the Khovanov chain complex, $\operatorname{CKh}(D(\widehat{\sigma}))$, are, in turn, in one-to-one correspondence with markings of the components of each resolution with either a 1 or an x (i.e., enhanced Kauffman states).

Let $\mathcal{I}_{\text {braid }}$ be the unique "braid-like" complete resolution of $D(\widehat{\sigma})$, and denote by Ψ^{+} (resp., Ψ^{-}) the basis element $1 \otimes \ldots \otimes 1$ (resp., $x \otimes \ldots \otimes x$) in the vector space associated to $\mathcal{I}_{\text {braid }} . \Psi^{-}$is a cycle, hence represents an element in $\operatorname{Kh}(\widehat{\sigma})$. Indeed, $\left[\Psi^{-}\right] \in \operatorname{Kh}(\widehat{\sigma})$ is precisely Plamenevskaya's invariant [14] of the transverse isotopy class of the transverse link represented by $\widehat{\sigma}$.

We are now ready to understand the \mathcal{A}_{n} structure induced by the n points p_{1}, \ldots, p_{n}. For each complete resolution, \mathcal{I}, choose a numbering of its $\ell_{\mathcal{I}}$ connected components, and let $v_{1} \otimes \ldots \otimes v_{\ell_{\mathcal{I}}}$ represent the Khovanov generator whose j th component in \mathcal{I} is marked with $v_{j} \in\{1, x\}$. Suppose p_{i} lies on the k th component of \mathcal{I}. Then the action of $x_{i} \in \mathcal{A}_{n}$ is the \mathbb{F}-linear extension of the assignment:

$$
x_{i} \cdot\left(v_{1} \otimes \ldots \otimes v_{k} \otimes \ldots \otimes v_{\ell_{I}}\right):=v_{1} \otimes \ldots \otimes x \otimes \ldots \otimes v_{\ell_{\mathcal{I}}}
$$

if $v_{k}=1$ and 0 otherwise.
It is straightforward to check that the Khovanov differential commutes with the action of \mathcal{A}_{n}, and it is shown in [5] (see also [9], [10]) that the homotopy equivalences associated to Reidemeister moves respect the \mathcal{A}_{n}-module structure, and moving a basepoint past a crossing yields a homotopic map. The homology, $\operatorname{Kh}(\widehat{\sigma})$, therefore inherits the structure of an \mathcal{A}_{n}-module, and this \mathcal{A}_{n}-module structure is an invariant of the link.

With these preliminaries in place, assume that $\widehat{\sigma}=U_{n}$. A quick calculation using the standard diagram of U_{n} tells us that $\operatorname{Kh}\left(U_{n}\right) \cong \mathcal{A}_{n}$ as an \mathcal{A}_{n}-module. Let $\theta \in \operatorname{CKh}(D(\widehat{\sigma}))$ be a cycle representing the homology class $1 \in \operatorname{Kh}\left(U_{n}\right) \cong \mathcal{A}_{n}$.

We now claim that when θ is expressed as a linear combination of the standard Khovanov generators, the coefficient of Ψ^{+}must be 1 . To see this, note that $x_{1} \cdots x_{n}(\theta)$ represents the non-zero homology class $x_{1} \cdots x_{n} \in \operatorname{Kh}(\widehat{\sigma})$, but if v is any basis element not equal to Ψ^{+}, then $x_{1} \cdots x_{n}(v)=0$. We see this immediately for $v \neq \Psi^{+} \in \mathcal{I}_{\text {braid }}$, and any complete resolution $\mathcal{I} \neq \mathcal{I}_{\text {braid }}$ contains at least one connected component intersecting the closure arc more than once, hence containing at least two basepoints $p_{i}, p_{j}, i \neq j$. We conclude that any basis element v associated to $\mathcal{I} \neq \mathcal{I}_{\text {braid }}$ satisfies $x_{i} x_{j}(v)=0$, hence also satisfies $x_{1} \cdots x_{n}(v)=0$.

The arguments in the previous paragraph imply that $x_{1} \cdots x_{n}(\theta)=x_{1} \cdots x_{n}\left(\Psi^{+}\right)=\Psi^{-}$, so $\left[\Psi^{-}\right]=x_{1} \cdots x_{n} \in K h(\widehat{\sigma})$. In particular, $\left[\Psi^{-}\right] \neq 0$.

But [1, Prop. 3.1] then implies that σ is right-veering.
Repeat the argument above on $m(\sigma)$, the mirror of σ, to conclude that σ is also leftveering. Since the only braid which is both left- and right-veering is the identity braid (cf. [1, Lem. 3.1]), $\sigma=\mathbb{1}_{n}$, as desired.

2. Fibred Links in $\#^{n}\left(S^{1} \times S^{2}\right)$

Recall that $\mathcal{L}_{n}:=\left\{\ell \in \mathbb{Z}^{+} \mid \ell \leq(n+1)\right.$ and $\left.\ell \equiv(n+1) \bmod 2\right\}$.

Lemma 1. If an ℓ-component link L has Euler characteristic $1-n$, then $\ell \in \mathcal{L}_{n}$.
Proof. Let S denote the fiber surface of $L, \chi(S)$ its Euler characteristic, and $g(S)$ its genus. Then $\chi(S)=1-n=(2-2 g(S))-\ell$. Since $g(S) \in \mathbb{Z} \geq 0$, we obtain $\ell \equiv(n+1) \bmod 2$ and $\ell \leq n+1$.

Lemma 2. If $L \subset Y_{n}$ is a fibered link, then $\chi(L) \leq 1-n$.
Proof. Suppose L has ℓ components, and let S denote the fiber surface of L, and h its monodromy. $H_{1}(S)$ is free of rank $1-\chi(S)=2 g(S)+(\ell-1)$. Viewing $Y_{n}-L$ as the mapping torus of h (cf. Section 2.1), we obtain a corresponding presentation of $H_{1}\left(Y_{n}\right) \cong \mathbb{Z}^{n}$ with $1-\chi(L)$ generators, hence $1-\chi(L) \geq n$.
2.1. Heegaard-Floer homology proof of Proposition 2. We begin with some background on Heegaard-Floer homology.
2.1.1. Heegaard-Floer module. Recall that in [12], Ozsváth-Szabó associate to a closed, oriented 3-manifold Y a graded vector space (for simplicity we work over $\mathbb{F}=\mathbb{Z} / 2 \mathbb{Z}$), $\widehat{H F}(Y)$, which splits over $\operatorname{Spin}^{c}(Y)$, the set of spin^{c} structures on Y :

$$
\widehat{H F}(Y)=\bigoplus_{\mathfrak{s} \in \operatorname{Spin}^{c}(Y)} \widehat{H F}(Y, \mathfrak{s})
$$

For appropriate choices of symplectic and almost complex structures, $\widehat{H F}(Y)$ is the Lagrangian Floer homology of a natural pair of Lagrangian tori, \mathbb{T}_{α} and \mathbb{T}_{β}, in the g-fold symmetric product of a pointed Heegaard surface, (Σ, w), for Y.
$\widehat{H F}(Y)$ can be given the structure of a module over $\Lambda^{*}\left(H_{1}(Y ; \mathbb{F})\right)$, as described in 12, Sec. 4.2.5]. Explicitly, let

$$
\left(\Sigma, \alpha=\left\{\alpha_{1}, \ldots, \alpha_{g}\right\}, \beta=\left\{\beta_{1}, \ldots, \beta_{g}\right\}, z\right)
$$

be a pointed, genus g Heegaard splitting of Y, and consider $\zeta \in H_{1}(Y ; \mathbb{F})$. Ozsváth-Szabó define an associated chain map,

$$
A_{\zeta}: \widehat{C F}(\Sigma, \alpha, \beta, z) \rightarrow \widehat{C F}(\Sigma, \alpha, \beta, z)
$$

on the Heegaard-Floer chain complex as follows ([12, Rmk. 4.20]). Let $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ be generators of the chain complex. Recall that $\pi_{2}(\mathbf{x}, \mathbf{y})$ denotes the set of domains in Σ representing topological Whitney disks connecting \mathbf{x} to \mathbf{y}, in the sense of [12, Sec. 2.4]. If $\phi \in \pi_{2}(\mathbf{x}, \mathbf{y})$, we follow the notation in [11, Sec. 2.1], letting $\partial_{\alpha} \phi:=(\partial \phi) \cap \mathbb{T}_{\alpha}$, regarded as a 1-chain with boundary $\mathbf{y}-\mathbf{x}$.

Choose an immersed curve,

$$
\gamma_{\zeta} \subset \Sigma-\left\{\alpha_{i} \cap \beta_{j}\right\}_{i, j \in\{1, \ldots, g\}}
$$

representing $\zeta \in H_{1}(Y ; \mathbb{F})$ and define

$$
a\left(\gamma_{\zeta}, \phi\right):=\# \widehat{\mathcal{M}}(\phi)\left(\gamma_{\zeta} \cdot \partial_{\alpha} \phi\right)
$$

where $\gamma_{\zeta} \cdot \partial_{\alpha} \phi$ is the algebraic intersection number of γ_{ζ} and $\partial_{\alpha} \phi$. Then the chain map associated to ζ is given by:

$$
A_{\zeta}(\mathbf{x})=\sum_{\mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}} \sum_{\left\{\phi \in \pi_{2}(\mathbf{x}, \mathbf{y}) \mid \mu(\phi)=1, n_{w}(\phi)=0\right\}} a\left(\gamma_{\zeta}, \phi\right) \cdot \mathbf{y}
$$

The map A_{ζ} is well-defined (independent of the choice of γ) up to chain homotopy (cf. [11, Lem. 2.4]).
2.1.2. Heegaard-Floer contact invariant. We now recall the definition of the Heegaard-Floer contact invariant [13, following the alternative construction given in [7]. Let ξ be a contact structure on a closed, connected, oriented 3-manifold Y. Then Giroux tells us [4] that there exists some fibered link L whose corresponding open book supports ξ. One can then build a Heegaard diagram for $-Y$ (Y with the opposite orientation) using

- a choice of basis, $\left\{a_{1}, \ldots, a_{n}\right\}$, for a page S (of Euler characteristic $1-n$) of the open book [7] Sec. 3.1], and
- the data of the monodromy, h, of the open book.

Honda-Kazez-Matić then identify a distinguished cycle in the corresponding chain complex, $\widehat{C F}(-Y)$, and prove both that the class it represents in $\widehat{H F}(-Y)$ is invariant of the choices used in its construction and that it agrees with the contact invariant defined in [13].

We will need the following property of the contact invariant, which follows immediately from [13, Thm. 1.4] and [6, Thm. 1.1]:
Lemma 3. If $L \subset Y$ is a fibered link whose monodromy, h, is not right-veering, then the Heegaard-Floer contact invariant associated to the contact structure supported by L is 0 .

We now proceed to the proof.
Proof of Proposition 2. Let $L_{\ell} \subset Y_{n}$ be an ℓ-component fibered link of Euler characteristic $1-n$. Construct a corresponding Heegaard diagram for $-Y_{n}$ as in [7, Sec. 3].

The module structure on $\widehat{H F}\left(-Y_{n}\right)$ has been computed in [12, Lem. 9.1]. Explicitly, $\widehat{H F}\left(-Y_{n}\right) \cong \mathcal{A}_{n}$ as a module over

$$
\Lambda^{*}\left(H_{1}\left(-Y_{n} ; \mathbb{F}\right)\right) \cong \mathcal{A}_{n}:=\mathbb{F}\left[\zeta_{1}, \ldots, \zeta_{n}\right] /\left(\zeta_{1}^{2}, \ldots, \zeta_{n}^{2}\right)
$$

In particular, $\zeta_{1} \cdots \zeta_{n} \neq 0 \in \widehat{H F}\left(-Y_{n}\right)$.
We can understand the module action explicitly in our setting as follows. All of our notation matches [7]. Examine the Honda-Kazez-Matić Heegaard diagram $\Sigma=S_{1 / 2} \cup-S_{0}$ associated to the fibered link, L_{ℓ}, and look at the "uninteresting" half, $S_{1 / 2} \subset \Sigma$, where the n-tuple of intersection points representing the contact class lives. Choose a compatible dual basis, $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$, of simple closed curves on $S_{1 / 2}$ satisfying $\left|a_{i} \cap \gamma_{j}\right|=\delta_{i j}$. The set of homology classes, $\left\{\left[\gamma_{1}\right], \ldots,\left[\gamma_{n}\right]\right\}$, obtained by viewing the γ_{i} as 1 -cycles in $-Y_{n}$, forms a basis for $H_{1}\left(-Y_{n} ; \mathbb{F}\right)$. Hence, for each $i \in\{1, \ldots, n\}$, the corresponding map on homology induced by the chain map $A_{\left[\gamma_{i}\right]}$ can be identified with $\zeta_{i} \in \mathcal{A}_{n}$.

Let $\theta \in \widehat{C F}\left(-Y_{n}\right)$ be any cycle representing $1 \in \widehat{H F}\left(-Y_{n}\right)$. Since $\zeta_{1} \cdots \zeta_{n} \neq 0 \in$ $\widehat{H F}\left(-Y_{n}\right)$, we know that there exists at least one generator $\mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ satisfying

$$
\left\langle A_{\left[\gamma_{1}\right]} \cdots A_{\left[\gamma_{n}\right]} \cdot \theta, \mathbf{y}\right\rangle \equiv 1 \quad \bmod 2
$$

Associated to such a generator \mathbf{y} is an odd number of corresponding Maslov index n domains in $\pi_{2}(\theta, \mathbf{y})$, each of which can be realized as the sum of n of the Maslov index 1 domains contributing to the chain maps $A_{\left[\gamma_{1}\right]}, \ldots, A_{\left[\gamma_{n}\right]}$. Consider the local multiplicity of such a Maslov index n domain, ψ, in the 4 regions adjacent to one of the constituent intersection points, x_{i}, of the distinguished cycle $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ representing the contact class. We know (see Figure 2) that the local multiplicity of ψ in the two regions adjacent to x_{i} that contain the basepoint, z_{0}, must be 0 and also that the local multiplicity in the region adjacent to the unique intersection point between γ_{i} and a_{i} must be nonzero (hence positive, since ψ is a sum of domains representing holomorphic disks). Since the fourth region must have non-negative multiplicity, we conclude that x_{i} must be a corner, of multiplicity at least one, in the boundary of ψ, implying that x_{i} must be a constituent intersection point of the generator \mathbf{y}.

Figure 2. The "uninteresting" half of a Honda-Kazez-Matić Heegaard diagram associated to a fibered link $L_{2} \subset Y_{3}$. The right-hand picture is a close-up of one of the constituent intersection points of the contact class and restrictions on the local multiplicities of the Maslov index n domain ψ. The NW, SE domains must have multiplicity 0 since they contain the basepoint z_{0}. One of the other two domains must have positive multiplicity, since it is the unique domain intersecting γ_{i}.

Since the above argument holds for each of the x_{i}, we conclude that, in fact, \mathbf{y} is actually the distinguished contact class, \mathbf{x}, and it follows that (working mod 2) $A_{\left[\gamma_{1}\right]} \cdots A_{\left[\gamma_{n}\right]} \cdot \theta=\mathbf{x}$. Therefore,

$$
\left[A_{\left[\gamma_{1}\right]} \cdots A_{\left[\gamma_{n}\right]} \cdot \theta\right]=[\mathbf{x}]=\zeta_{1} \cdots \zeta_{n} \neq 0 \in \widehat{H F}\left(-Y_{n}\right)
$$

so the Heegaard-Floer contact invariant associated to the contact structure supported by L_{ℓ} is nonzero. By Lemma 3, the monodromy, h, of L_{ℓ} is right-veering.

Now consider the mirror of L, i.e., the fibered link $L \subset-Y_{n}$ with monodromy h^{-1}. By running the same argument above, we conclude that the contact invariant associated to the contact structure supported by the mirror of L is also nonzero. Hence, h^{-1} is right-veering, implying that h is left-veering.

But if h is both right- and left-veering, then h is isotopic to the identity mapping class, and hence $\left(Y_{n}, L_{\ell}\right)$ is diffeomorphic as a pair to $\left(Y_{n}, \mathbf{L}_{\ell}\right)$.

References

[1] J.A. Baldwin and J.E. Grigsby. Categorified invariants and the braid group. math.GT/1212.2222, 2012.
[2] T. D. Cochran. Non-trivial links and plats with trivial Gassner matrices. Math. Proc. Cambridge Philos. Soc., 119(1):43-53, 1996.
[3] P. Ghiggini and P. Lisca. Open book decompositions versus prime factorizations of closed, oriented 3-manifolds. math.GT/1407.2148, 2014.
[4] Emmanuel Giroux. Géométrie de contact: de la dimension trois vers les dimensions supérieures. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 405-414, Beijing, 2002. Higher Ed. Press.
[5] M. Hedden and Y. Ni. Khovanov module and the detection of unlinks. math.GT/1204.0960, 2012.
[6] K. Honda, W. H. Kazez, and G. Matić. Right-veering diffeomorphisms of compact surfaces with boundary. Invent. Math., 169(2):427-449, 2007.
[7] Ko Honda, William H. Kazez, and Gordana Matić. On the contact class in Heegaard Floer homology. J. Differential Geom., 83(2):289-311, 2009.
[8] J. Johnson. Heegaard splittings and open books. math.GT/1110.2142, 2011.
[9] M. Khovanov. A categorification of the Jones polynomial. Duke Math. J., 101(3):359-426, 2000.
[10] M. Khovanov. Patterns in knot cohomology, I. Experiment. Math., 12(3):365-374, 2003.
[11] Y. Ni. Homological actions on sutured Floer homology. math.GT/1010.2808, 2010.
[12] P. Ozsváth and Z. Szabó. Holomorphic disks and topological invariants for closed three-manifolds. Ann. of Math. (2), 159(3):1027-1158, 2004.
[13] P. Ozsváth and Z. Szabó. Heegaard Floer homology and contact structures. Duke Math. J., 129(1):3961, 2005.
[14] O. Plamenevskaya. Transverse knots and Khovanov homology. Math. Res. Lett., 13(4):571-586, 2006.
Boston College; Department of Mathematics; 301 Carney Hall; Chestnut Hill, MA 02467
E-mail address: grigsbyj@bc.edu
Syracuse University; Mathematics Department; 215 Carnegie; Syracuse, NY 13244, USA
E-mail address: smwehrli@syr.edu

[^0]: JEG was partially supported by NSF grant number DMS-0905848 and NSF CAREER award DMS1151671.

 SMW was partially supported by NSF grant number DMS-1111680.

