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Abstract. Let L ⊂ A × I be a link in a thickened annulus. We show that its sutured

annular Khovanov homology carries an action of sl2(∧), the exterior current algebra of
sl2. When L is an m–framed n–cable of a knot K ⊂ S3, its sutured annular Khovanov

homology carries a commuting action of the symmetric group Sn. One therefore obtains

a “knotted” Schur-Weyl representation that agrees with classical sl2 Schur-Weyl duality
when K is the Seifert-framed unknot.

1. Introduction

Knot homologies, like the quantum knot polynomials they categorify, are intimately con-
nected to the representation theory of Lie algebras and quantum groups. Khovanov homol-
ogy, the first and most basic of these homology theories, can be constructed by categorifying
a part of the representation theory of Uq(sl2). Roughly speaking, the idea is to lift the
Reshetikhin-Turaev graphical calculus of Uq(sl2)-intertwiners one level on the categorical
ladder.

1.1. Tangle invariants and link homologies from Uq(sl2) categorification. Let T be
a tangle in D2× I connecting n points in D2×{0} to m points in D2×{1}. The most basic
of the Reshitikhin-Turaev tangle invariants assigns to T a Uq(sl2) homomorphism

ψ(T ) : V ⊗n1 −→ V ⊗m1 ,

where V1 is the defining two-dimensional representation of the quantum group Uq(sl2).
One flavor of categorified tangle invariant replaces the C(q) vector spaces V ⊗n1 by a

graded category C(n) with Grothendieck group K0(C(n)) ∼= V ⊗n1 ; the linear map ψ(T ) is
then upgraded to a functor

Ψ(T ) : C(n) −→ C(m),

with K0(Ψ(T )) = ψ(T ). A fascinating aspect of the story is that the categories C(n) can be
chosen from a number of mathematical subjects. C(n) could be a category of coherent or
constructible sheaves on an algebraic variety, a Fukaya category of a symplectic manifold, a
category of modular representations of a finite group, a category of matrix factorizations, or
a category of modules over a finite-dimensional algebra. The choice which is most directly
relevant for the current paper is due to Chen-Khovanov [11] and independently Brundan-
Stroppel [8], who define finite-dimensional algebras An and take C(n) to be the derived
category of left An modules. The functor valued tangle invariant Ψ(T ) is then given by
tensoring with a complex of (An, Am) bimodules specified by a cube of resolutions of the
tangle T .1

JEG was partially supported by NSF CAREER award DMS-1151671.

SMW was partially supported by NSF grant DMS-1111680.
1The construction of this functor-valued tangle invariant is made more explicit in [11] than in [8], whose

focus is on a relationship between the algebras An and category O.
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Given an (n, n) tangle T , it is natural to study its closure, T̂ , as a link in the thickened
annulus A× I. To obtain a topological invariant of this closure, one can then take the de-
rived self-tensor product (Hochschild homology) of the (An, An) bimodule described above.

Alternatively, one can consider its sutured annular Khovanov homology SKh(T̂ ), defined
by Asaeda-Przytycki-Sikora [1].2 Sutured annular Khovanov homology is defined using an
explicit chain complex coming from a cube of resolutions, much in the spirit of Khovanov’s
original definition of a homology theory for links in S3.

In fact, these two invariants are expected to agree. Explicitly, it is conjectured (cf. [2,
Conj. 1.1])3 that:

HH∗(Ψ(T )) ∼= SKh(T̂ ).

The expectation that sutured annular Khovanov homology arises as Hochschild homol-
ogy of bimodules from Uq(sl2) categorification suggests that the annular homology groups
SKh(L) themselves should carry rich structure of representation-theoretic interest. The goal
of the present work is to describe some of this structure directly, in down-to-earth terms,
without appealing to either Hochschild homology or higher representation theory.

1.2. Representation theory and sutured annular Khovanov homology. The most
basic of the representation-theoretic structures enjoyed by SKh(L) is a linear action of sl2.
We define this sl2 action directly on the chain level and check that it commutes with the
annular boundary maps. We further show that this sl2 action is diagram-independent, hence
an invariant of the underlying annular link. An amusing corollary of this fact is that the
sutured Khovanov homology of an annular link is trapezoidal with respect to the sl2 weight
space grading (Corollary 1). One conceptual explanation for the sl2 action comes from
the conjecture that SKh can be realized as Hochschild homology of bimodules in Uq(sl2)
categorification (see Section 1.3 below).

It turns out that SKh(L) has somewhat more symmetry than that provided by the sl2
action. The Lie algebra sl2 is the tangent space to the identity of the Lie group SL2, but if
we consider the action of SL2 on itself by conjugation, then the quotient stack SL2//SL2

also has a “tangent space,” which is actually a complex of sheaves. The fiber of this complex
over the identity has the structure of a Z-graded Lie superalgebra, which we refer to in this
paper as the exterior current algebra of sl2, and denote sl2(∧). As a graded vector space,
we have

sl2(∧) = sl2 ⊕ sl2[1],

with the Lie bracket given essentially by the adjoint action of sl2 on itself (see Section 2.2
for a precise definition.) We prove the following.

Theorem 1. Let L ⊂ A × I be an annular link. Then the exterior current algebra sl2(∧)
acts linearly on SKh(L), and the isomorphism class of this representation is an annular link
invariant.

2Asaeda-Przytycki-Sikora [1] in fact introduced a version of Khovanov homology for links in thickened

oriented surfaces F × I. The annular case F = A was explored further by L. Roberts in [33], who related
it to Heegaard Floer knot homology as in [27] (see Sec. 3). This annular theory has come to be known as
sutured annular Khovanov homology because of a relationship (cf. [13], [12]) with Juhász’s sutured version

of Heegaard Floer homology [20].
3For fixed n ∈ Z+, Chen-Khovanov and Brundan-Stroppel introduce a further grading C(n) =

⊕n
k=0C(n, k) on the category C. A more precise version of the conjecture relates the Hochschild homol-

ogy of the bimodule associated to the category C(n, k) with a graded summand SKh(L;−n+ 2k) ⊆ SKh(L).

In [2], the conjecture is proved in the k = 1 case.
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The proof of this theorem is direct, as we define the action of the generators of sl2(∧) at
the chain level and check that the defining relations hold up to homotopy. An interesting
point is that the check of relations uses fundamentally the compatibility of the Khovanov
differential and the Lee deformation [25], both with each other and with the additional
annular grading of the chain complex. In contrast to the sl2 action on SKh(L), a more
conceptual explanation for the appearance of the exterior current algebra from categorified
quantum groups and Hochschild homology is missing at the moment.

Given Theorem 1, it is reasonable to reformulate annular Khovanov homology as a func-
tor from the category of annular links (with morphisms the annular link cobordisms) to
the category of finite-dimensional graded representations of sl2(∧). It follows from this de-
scription that the sl2(∧) module structure on SKh(L) is an annular link invariant and that
annular link cobordisms induce sl2(∧)-module homomorphisms. An important special case
is when L is the cable of a knot, as in this case the sl2(∧)-module endomorphisms induced
by annular link cobordisms have additional structure. We prove the following result, a more
precise version of which is stated in Section 7.

Theorem 2. Let K ⊂ S3 be a knot, and let L = Kn,nm ⊂ A × I denote its m–framed
n–cable. Then SKh(L) carries commuting actions of sl2(∧) and of the symmetric group Sn.

When K is the unknot, and L = Kn,0 is its Seifert-framed n–cable, the positive degree
part of sl2(∧) acts trivially, so the sl2(∧) action reduces to an sl2 action, and the commuting
actions of sl2 and Sn then recover the usual Schur-Weyl representation on the nth tensor
power of the defining representation of sl2 (cf. Sec. 9.1). Thus Theorem 2 may be viewed
as a generalization of the Schur-Weyl representation to arbitrary framed knots, with the sl2
action in Schur-Weyl duality upgraded to an action of the exterior current algebra.

The topological implications of the exterior current algebra action certainly merit further
exploration. We content ourselves here with recalling that the (filtered) annular Khovanov
complex is particularly well-suited to studying braid conjugacy classes [4] and transverse
links with respect to the standard tight contact structure on S3 [28]. In particular, it
distinguishes braid closures from the closures of other tangles [15] and detects the trivial n–
braid among all n–braids [4]. Moreover, by imbedding the solid torus in S3 in the standard
way, one obtains a spectral sequence from the sutured annular Khovanov homology of L to
the ordinary Khovanov homology of L. Although Plamenevskaya’s construction predates
annular Khovanov homology, her transverse link invariant [28] is a compelling character in
the story described here. Hunt, Keese, and Morrison recently wrote a computer program
which computes both the sutured annular Khovanov homology of braid closures as well as
the spectral sequence to Khovanov homology. A user’s guide to that program, along with
some example computations, can be found in the companion paper [17].

1.3. The sl2 action on SKh(L) via categorified quantum groups. Conjecturally,
SKh(L) can be realized as HH∗(Ψ(T )), where Ψ(T ) is a complex of bimodules over the
Chen-Khovanov/Brundan-Stroppel algebras. This expectation gives rise to one conceptual
explanation for the existence of an sl2 action on SKh(L). Namely, on the derived category
Db(C(n)), one should be able to define directly an action of the categorified quantum group
U(sl2) defined by Lauda in [24].4 The defining 1-morphisms E,F in Lauda’s 2-category are

4The existence of such an action follows formally from Koszul duality, since there is an explicit categorical

action of Uq(sl2) on the Koszul dual of C(n). It would be desirable to describe the action of the generating

2-morphisms of Lauda’s 2-category on Db(C(n)) directly, though to our knowledge that has not been done
yet.
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left and right adjoint to one another, and the adjunction 2-morphisms give rise to endomor-
phisms

e, f : HH∗(Y ) −→ HH∗(Y ),

where Y can be taken to be any complex of (An, An) bimodules which commutes with
the functors E and F . (The endomorphisms e, f are sometimes referred to as Bernstein
trace maps [7]). The further structure in Lauda’s 2-category then implies that the maps
e, f, h = [e, f ] will satisfy the defining relations of the Lie algebra sl2 [6]. In particular, if
one takes the functor Y to be Ψ(T ) for an (n, n) tangle T , one should obtain in this way an
sl2 action on HH∗(Ψ(T )). At the moment, it is not clear to us how to use the categorified
quantum group to obtain an action of the exterior current algebra directly on HH∗(Ψ(T )).
However, we should note that the closely related polynomial current algebra of sl2 does
appear in [6].

The existence of an sl2 action on the annular Khovanov homology of a link also clarifies
the relationship between this homology and the skein module of A × I. Namely, the skein
module of a three-manifold M is isomorphic (at least at q = 1) to the coordinate ring of the
SL2-character variety of π1(M) [29]. In the case when M = A×I, this description essentially
reduces to an identification between the skein module of A× I and the W -invariants in the
coordinate ring of T , where here W = S2 is the Weyl group of SL2 and T ⊂ SL2 is the
associated maximal torus. Thus, the skein module of A × I is isomorphic to W -invariant
functions on T , which in turn may be identified with the Grothendieck group of the category
of representations of sl2. Thus, from this point of view, the precise relationship between
SKh and the skein module of the annulus naturally involves the representation theory of
sl2. More precisely, we expect that, given a link L in A × I, the class of SKh(L) in the
Grothendieck group of graded representations of sl2 should agree with the class of L in the
skein module of A× I. The details of this identification and its generalization to other skein
modules is something that should be interesting to investigate further.

In fact, the entire story above can be generalized from sl2 to sln using other represen-
tations of Khovanov-Lauda-Rouquier’s categorified quantum groups. The details of this
generalization, including a definition of annular sln homology and an explicit description
of the action of sln on the annular homology of any link, have been carried out in recent
interesting work of Queffelec-Rose [30].

1.4. Organization. The organization of the paper is as follows.

• In Sections 2 and 3 we recall the definition of sutured Khovanov homology (SKh)
for annular links and review some basic facts about the representation theory of sl2
and sl2(∧).

• In Section 4, we define the sl2 action on the chain level and prove that the action
commutes with the sutured differential, hence induces an action on homology that
is diagram-independent. To do this, we reinterpret SKh of an annular link in terms
of Bar-Natan’s cobordism category, first extending the Khovanov bracket to the
annular setting, then rephrasing the sutured annular Khovanov chain complex CKh
as a functor from the annular Bar-Natan cobordism category to a category of graded
representations of sl2 (Proposition 1).

• In Section 5, we describe some basic properties of sutured annular Khovanov ho-
mology as an sl2 representation. In particular, we prove that it is trapezoidal with
respect to the k grading, show its functoriality (up to sign) under annular link cobor-
disms, and explain how the sl2 action at the chain level can be understood via the
standard action by marked points.
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• In Section 6, we enlarge the action of sl2 on SKh(L) to that of the Lie superalgebra
sl2(∧), and prove that annular link cobordisms induce well-defined morphisms of
sl2(∧) modules (Proposition 7). Theorem 1 follows.

• In Section 7 we prove Theorem 2. We also introduce the inductive limits SKheven(K)

and SKhodd(K), which are infinite-dimensional invariants of the knot K ⊂ S3.
• In Section 8 we give a quiver description of the category of finite-dimensional rep-

resentations of sl2(∧), showing directly that these categories are governed by finite-
dimensional quadratic (in fact Koszul) algebras.

• In Section 9 we include some example computations and conjectures.
• In the appendix, we state and prove the annular version of the Carter-Saito theorem

[10] needed for the functoriality statements in Section 5.

1.5. Acknowledgements. The authors would like to thank John Baldwin, Jack Hall, Han-
nah Keese, Aaron Lauda, Scott Morrison, Hoel Queffelec, Peter Samuelson, Alistair Savage,
and David Treumann for interesting discussions. The authors would also like to thank
Mikhail Khovanov, who originally proposed the idea of using maps induced by Reidemeister
moves to define an Sn–action on the Khovanov homology of n–cables of knots.

2. Representation theoretic preliminaries

2.1. sl2 and its finite-dimensional representations. We work over C throughout. Ac-
cordingly, we will denote the Lie algebras glk(C) and slk(C) by glk and slk, respectively.

We recall some elementary facts about the finite-dimensional representation theory of the
Lie algebra sl2. The Lie algebra sl2 has a C–vector space basis given by the set {e, f, h}
with Lie bracket:

(1) [e, f ] = h, [e, h] = −2e, [f, h] = 2f.

With respect to the standard basis of the 2–dimensional defining representation of sl2,
we have:

h 7→
(

1 0
0 −1

)
, e 7→

(
0 1
0 0

)
, f 7→

(
0 0
1 0

)
.

As a C–vector space, any finite-dimensional representation, U , of sl2 decomposes into
weight spaces, i.e., into eigenspaces for the action of h. Explicitly,

U :=
⊕
λ∈Z

U [λ],

where

U [λ] := {v ∈ U hv = λv}.

The bracket relations tell us that the generators e (resp., f) act on the weight spaces as
raising (resp., lowering) operators eλ : U [λ]→ U [λ+ 2], (resp., fλ : U [λ]→ U [λ− 2]).

Each finite-dimensional irrep of sl2 is determined by its highest weight, N ∈ Z≥0. Explic-
itly, for each N ∈ Z≥0, one constructs an (N + 1)–dimensional irrep, V(N), of the form

V(N) := SpanC{v, fv, . . . , fNv},

with hv = Nv (and, hence, h(f i(v)) = (N − 2i)f i(v)). All finite-dimensional sl2 irreps arise
in this manner. The defining two-dimensional irreducible representation V(1) of sl2, which
plays a central role in what follows, will simply be denoted V .
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2.2. The Lie superalgebra sl2(∧). We now describe the exterior current algebra sl2(∧)
by generators and relations. We have

sl2(∧) ∼= sl2 ⊕ sl2,

with the first summand in degree 0 and the second in degree 1 for the Z (and Z2) gradings.
We fix the standard {e, f, h} basis of sl2; in order to distinguish the two distinct sl2 sum-
mands in sl2(∧) from each other, we will write the standard basis of the degree 1 summand
as {v2, v−2, v0}. In this basis, the adjoint action of sl2 action is

e(v2) = 0, e(v0) = −2v2, e(v−2) = v0,

f(v2) = −v0, f(v0) = 2v−2, f(v−2) = 0.

Thus, in the basis {e, f, h, v2, v−2, v0}, the Lie superalgebra sl2(∧) has defining relations

• [e, f ] = h;
• [h, e] = 2e;
• [h, f ] = −2f ;
• [e, v2] = 0;
• [e, v0] = −2v2;
• [e, v−2] = v0 = −[f, v2];
• [f, v0] = 2v−2;
• [f, v−2] = 0;
• [h, v2] = 2v2;
• [h, v0] = 0;
• [h, v−2] = −2v−2;
• [vi, vj ] = 0 for i, j ∈ {2, 0,−2}.

The Z and Z2 gradings on sl2(∧) induce Z and Z2 gradings on its enveloping algebra
U(sl2(∧)).

3. Topological preliminaries

3.1. Sutured annular Khovanov homology and Lee homology. Let A be a closed,
oriented annulus, I = [0, 1] the closed, oriented unit interval. Via the identification

A× I = {(r, θ, z) r ∈ [1, 2], θ ∈ [0, 2π), z ∈ [0, 1]} ⊂ (S3 = R3 ∪∞),

any link, L ⊂ A × I, may naturally be viewed as a link in the complement of a stan-
dardly imbedded unknot, (U = z–axis ∪ ∞) ⊂ S3. Such an annular link L ⊂ A × I
admits a diagram, P(L) ⊂ A, obtained by projecting a generic isotopy class representa-
tive of L onto A × {1/2}, and from this diagram one can construct a triply-graded chain
complex, CKh(P(L)), using a version of Khovanov’s original construction [21] due to Asaeda-
Przytycki-Sikora [1] and L. Roberts [33] (see also [12]), briefly recalled here.

View P(L) ⊂ A instead as a diagram on S2−{X,O}, where X (resp., O) are basepoints on
S2 corresponding to the inner (resp., outer) boundary circles of A. If we temporarily forget
the data of X, we may view P(L) as a diagram on R2 = S2 − {O} and form the ordinary
bigraded Khovanov complex

CKh(P(L)) =
⊕

(i,j)∈Z2

CKhi(P(L); j)

as described in [21].
Recalling that the generators of CKh(P(L)) correspond to oriented Kauffman states (cf.

[14, Sec. 4.2]), we now obtain a third grading on the complex by defining the “k” grading of a
generator (up to an overall shift) to be the algebraic intersection number of the corresponding
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oriented Kauffman state with a fixed oriented arc γ from X to O that misses all crossings
of P(L). Roberts proves ([33, Lem. 1]) that the Khovanov differential, ∂, is non-increasing
in this extra grading. Decomposing ∂ = ∂0 + ∂− into its k-grading–preserving and k-
grading–decreasing parts, we obtain a triply-graded chain complex (CKh(P(L)), ∂0) whose
homology,

SKh(L) :=
⊕

(i,j,k)∈Z3

SKhi(L; j, k),

is an invariant of L ⊂ A× I, called the sutured annular Khovanov homology of L. More can
be said:

Lemma 1. Let CKh(P(L)) be the triply-graded vector space associated to a diagram of an
annular link, L ⊂ A× I as above, and let ∂ = ∂0 +∂− be the decomposition of the Khovanov
differential in terms of the k–grading. Then (CKh(P(L)), ∂0, ∂−) is a bicomplex.

Proof. The operator ∂− is homogeneous (of degree −2) in the k–grading. Decomposing
∂2 = 0 into its homogeneous summands, it follows that ∂2

− = 0 and ∂0∂− + ∂−∂0 = 0. �

One therefore obtains a spectral sequence converging to Kh(L) whose E1 page is SKh(L).
Each page of this spectral sequence is an invariant of L ⊂ A× I (cf. [33]).

The reader is warned that the other spectral sequence associated to this bicomplex (whose
E1 page is the homology of (CKh(P(L), ∂−)) is not an invariant of the annular link L.

Remark 1. In [33], the complex CKh(P(L)) is considered as a filtered complex, with the
filtration induced by the k grading. This filtration agrees with the standard one associated
to the bicomplex described above.

Remark 2. In what follows it will be convenient for us to replace Khovanov’s original “j”
(quantum) grading with a “ j′ ” (filtration-adjusted quantum) grading. If x ∈ CKh(P(L)) is
a generator, j′(x) := j(x)−k(x). The sutured differential, ∂0, is degree (1, 0, 0) with respect
to the (i, j′, k) grading, while the endomorphism ∂− has degree (1, 2,−2).

The chain complex CKh(P(L)) also comes equipped with a natural involution Θ, defined
in the following lemma (cf. [3, Prop.7.2, (3)]):

Lemma 2. Let L ⊂ (A× I) ⊂ S3 be an annular link,

P(L) ⊂ (S2 − O− X) ⊂ (S2 − O) ∼ R2

a diagram for L, and
P ′(L) ⊂ (S2 − X− O) ⊂ (S2 − X) ∼ R2

the diagram obtained by exchanging the roles of O and X. The corresponding map

Θ : CKh(P(L))→ CKh(P ′(L))

is a chain isomorphism inducing an isomorphism SKhi,j
′
(L; k) ∼= SKhi,j

′
(L;−k) for all

(i, j′, k) ∈ Z3.

Proof. Recall that the generators of the sutured Khovanov complex are identified with
enhanced (oriented) Kauffman states. Therefore, the result of preserving the orientation
on S2 but exchanging the roles of O and X is that a counterclockwise (resp., clockwise)
orientation on a nontrivial circle is now viewed as a clockwise (resp., counterclockwise)
orientation. On the other hand, orientations on all trivial components are preserved. In the
language of [33], v+ and v− labels are exchanged, but w± labels are preserved. Since the
sutured Khovanov differential is symmetric with respect to v± (cf. [33, Sec. 2]), Θ is a chain
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map. Moreover, Θ ◦Θ = 1, so it is a chain isomorphism. That it preserves the homological
(i) and new quantum (j′) gradings but changes the sign of the weight space (k) grading is
immediate from the definition. �

Let ∂Lee denote Lee’s deformation of Khovanov’s differential, defined in [25, Sec. 4] (and
denoted Φ there). Lee proves:

• (∂Lee)2 = 0

• ∂∂Lee + ∂Lee∂ = 0.

As with the Khovanov differential above, we may write the Lee deformation as a sum

∂Lee = ∂Lee0 + ∂Lee+ ,

where this time ∂Lee has (i, j′, k) degree (1, 4, 0), while ∂Lee+ has degree (1, 2, 2).

We collect the relationships between ∂0, ∂−, ∂
Lee
0 , ∂Lee+ and Θ in the following:

Lemma 3. The endomorphisms ∂0, ∂−, ∂
Lee
0 , ∂Lee+ and Θ of CKh(P(L)) satisfy the follow-

ing.

(1) ∂2
0 = (∂Lee0 )2 = 0;

(2) ∂2
− = (∂Lee+ )2 = 0;

(3) Θ∂0 = ∂0Θ;
(4) Θ∂Lee0 = ∂Lee0 Θ;
(5) Θ∂− = ∂Lee+ Θ;
(6) ∂−∂0 + ∂0∂− = 0;
(7) ∂Lee+ ∂Lee0 + ∂0∂

Lee
+ = 0;

(8) ∂Lee+ ∂0 + ∂0∂
Lee
+ = 0;

(9) ∂−∂
Lee
0 + ∂Lee0 ∂− = 0

(10) ∂0∂
Lee
0 + ∂Lee0 ∂ + ∂−∂

Lee
+ + ∂Lee+ ∂− = 0;

Proof. The first observations are that Θ commutes with ∂0 and ∂Lee0 , and that conjugation
by Θ exchanges ∂− and ∂Lee+ ; these statements are direct checks along the various split and
merge maps in the cube. The remaining statements now follow from this by expanding the
equations ∂2 = 0, (∂Lee)2 = 0, and ∂∂Lee + ∂Lee∂ = 0 into k–homogeneous terms. �

4. A sutured annular Khovanov bracket and sl2

4.1. Khovanov bracket for annular links. Let L ⊂ A×I be an annular link and P(L) ⊂
A a diagram for L, as in the previous subsection. Following Bar-Natan [5, Sections 2 and
11], one can define an abstract chain complex

[P(L)] =
(
. . . −→ [P(L)]i−1 −→ [P(L)]i −→ [P(L)]i−1 −→ . . .

)
by constructing a resolution cube for P(L) and then formally taking direct sums of resolu-
tions that sit in the same “i” degree. The differential in this complex is defined in terms of
(signed) saddle cobordisms associated to the edges of the resolution cube, and the resulting
complex, [P(L)], is viewed as an object in the category Kom/h(Mat(Cob3/`(A))), defined

below.

Definition 1. Let Cob3(A) denote the category whose objects are closed, unoriented 1-
manifolds in A, and whose morphisms between two objects C0 and C1 are unoriented 2-
cobordisms S ⊂ A × I satisfying ∂S = (C0 × {0}) q (C1 × {1}), considered up to isotopy
rel boundary. Let Cob3/`(A) denote the category which has the same objects as Cob3(A) and
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whose morphisms are formal C–linear combinations of morphisms in Cob3(A), considered
modulo the S, T , and 4Tu relations described in [5, Subs. 4.1].

Definition 2. For a pre-additive category A, we denote by Mat(A) the additive closure
of A. If A is an additive category, then we denote by Kom/h(A) the bounded homotopy
category of A.

We will use the shorthand notation Kob/h(A) := Kom/h(Mat(Cob3/`(A))), and we will

write Kob/±h(A) for the (non-additive) category obtained from Kob/h(A) by identifying
each morphism with its negative. Bar-Natan proved in [5] that the homotopy type of
the complex [P(L)] is invariant under Reidemeister moves, and thus the object [P(L)] ∈
Kob/h(A) provides an invariant for the annular link L ⊂ A × I when considered up to
isomorphism in Kob/h(A). We will see in Proposition 4 below that [P(L)] also has good
functoriality properties.

Remark 3. Cob3/`(A) can be transformed into a graded category by replacing objects of

Cob3/`(A) by pairs (C, j′) where C ∈ Cob3/`(A), and where j′ is an integer, to be thought

of as a formal grading shift. In the remainder of this paper, we will implicitly assume
that Cob3/`(A) is this graded category, and that [P(L)] is the graded version of the annular

Khovanov bracket (defined as in [5, Sec. 6]).

4.2. CKh as a TQFT valued in representations of sl2. Let gRep(sl2) denote the
category of Z-graded representations of sl2. An object of gRep(sl2) is a direct sum

Y =
⊕
n∈Z

Y (n),

where each Y (n) is a finite-dimensional representation of sl2. An object Y ∈ gRep(sl2) is
sometimes naturally regarded as a bigraded vector space, where the component gradings are
the Z-grading above and the sl2 weight space grading. These component gradings will be
referred to as the j′ and k gradings, respectively (in particular, k-grading means sl2-weight-
space grading). For m ∈ Z, we will denote by {m} the grading shift operator which acts on
objects of gRep(sl2) by raising the j′ grading by m. That is, if Y is an object of gRep(sl2),
then Y {m} denotes the object with components (Y {m})(n+m) := Y (n).

We will define a (1+1) dimensional TQFT with values in gRep(sl2). In order to do this,
we will need to use three particular graded representations of sl2:

• Let

V := SpanC{v+, v−}
denote the two dimensional defining representation of sl2. The bigrading on V
is j′(v±) = 0 and k(v±) = ±1; in particular, v+ is a highest weight vector, and
v− = f · v+ a lowest weight vector.

• Let

V ∗ := SpanC{v+, v−}
denote the dual representation to V , where v− is the dual vector to v+ and v+ is
the dual vector to v−. The bigrading on V ∗ is j′(v±) = 0 and k(v±) = ±1.

• Let

W := SpanC{w+, w−}
be the trivial two-dimensional representation of sl2, graded with j′(w±) = ±1 and
k(w±) = 0.
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Of course, the objects V and V ∗ are isomorphic in gRep(sl2). However, the matrices for the
action of the standard basis {e, f, h} with respect to the bases {v±} on V and {v±} on V ∗

are different; for example,

e · v− = v+, but e · v− = −v+.

(Note also that Khovanov’s “j” grading used in [33] is the sum of the “j′” and the “k”
grading. See Remark 2)

We will now define an additive functor

F : Cob3/`(A) −→ gRep(sl2).

4.2.1. F on objects. Let C ∈ Cob3/`(A) be an unoriented 1-manifold C ⊂ A with `n nontrivial

circles and `t trivial circles. Choose any ordering C1, . . . , C`n , C`n+1, . . . , C`n+`t of the circles
of C such that all of the nontrivial circles are listed first. Regard C as a submanifold of
S2 − X − O, where X (resp., O) is a basepoint on S2 corresponding to the inner (resp.,
outer) boundary of A, as in Subsection 3.1. For i ∈ {1, . . . , `n}, we denote by X(Ci) ∈
{0, . . . , `n − 1} the number of nontrivial circles of C which lie in the same component of
S2 − Ci as the basepoint X, and we define

ε(Ci) := (−1)X(Ci).

We now set

F(C) := (
⊗

ε(Ci)=1

V )⊗ (
⊗

ε(Ci)=−1

V ∗)⊗ (

`t⊗
s=1

W ).

Thus nontrivial circles Ci are assigned either V or V ∗, depending on the sign ε(Ci), and
trivial circles are assigned W .

4.2.2. F on morphisms. To define F on morphisms, we use that morphisms of Cob3/`(A)

are generated by elementary Morse cobordisms: cup cobordisms creating a trivial circle,
cap cobordisms annihilating a trivial circle, and saddle cobordisms, which either merge
two circles into one or split one circle into two. To saddle cobordisms, we now assign the
merge/split maps defined by L. Roberts in [33, Sec. 2]; to cup cobordisms, we assign the
map ι : C→W given by ι(1) := w+; to cap cobordisms, we assign the map ε : W → C given
by ε(w+) := 0 and ε(w−) := 1.

There are two points about the above definition that require explanation. The first is
that the above assignment to cups, caps, and saddles induces a well-defined linear map on
any annular cobordism. To see this, note that ι and ε are precisely the unit and counit
maps defined by Khovanov in [21]. L. Roberts further shows that his merge/split maps can
be viewed as the degree 0 parts (with respect to the “k” filtration) of Khovanov’s multipli-
cation/comultiplication maps. Hence it follows that F can be viewed as the homogeneous
part (with respect to the “k” grading) of Khovanov’s (1 + 1)-dimensional TQFT from [21].
In particular, this shows that the linear map F assigns to a cobordism does not depend on
how it is assembled from elementary Morse cobordisms.

The second point is to observe that the linear maps that F assigns to generating mor-
phisms of Cob3/`(A) (cup, cap, and saddle cobordisms in A× I) are maps of sl2-modules, so

that the functor F can be regarded as taking values in gRep(sl2). For cup and cap cobor-
disms in A × I, this is obvious, because the “non-identity parts” of these cobordisms only
involve trivial circles, and hence the “non-identity parts” of the associated linear maps only
involve W factors, on which the sl2 action is trivial. For saddle cobordisms in A × I, we
have the following lemma:
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Lemma 4. With the above assignment of sl2–module structures to the vector spaces F(C),
each merge/split map (defined as in [33, Sec. 2]):

W ⊗W ←→ W,

W ⊗ V ←→ V,

W ⊗ V ∗ ←→ V ∗,

V ⊗ V ∗ ←→ W

is an sl2–module map of (j′, k)–bidegree (−1, 0).

Proof. Since W is a direct sum of trivial sl2–modules, there is nothing to check for line (1).
Lines (2) and (3) have essentially the same proof. For example, in line (2) we have

V ∗⊗x ⊗ V ⊗y ⊗ (V ⊗W )⊗W⊗z 1⊗...1⊗(Φ)⊗1−−−−−−−−−−→ V ∗⊗x ⊗ V ⊗y ⊗ (V )⊗W⊗z,
where Φ is either the merge or split map, depending on the direction of the arrow, and

V ⊗W := V {−1} ⊕ V {1}
is a direct sum of two irreducible graded representations of sl2.

If C (resp., C ′) is the nontrivial circle involved in the merge/split before (resp., after)
the merge/split, then it is straightforward to check that ε(C) = ε(C ′). It follows that the
Roberts merge (resp., split) map is precisely the canonical degree (0, 0) projection of sl2
representations:

V {−1} ⊕ V {1} −→ V {1}
(resp., inclusion):

V −→ V {0} ⊕ V {2}.
For line (4), we have

V ∗⊗x ⊗ V ⊗y ⊗ (V ⊗ V ∗)⊗W⊗z 1⊗...1⊗(Φ)⊗1−−−−−−−−−−→ V ∗⊗x ⊗ V ⊗y ⊗ (W )⊗W⊗z,
where Φ again denotes the merge or split, depending on the direction of the arrow, and

V ⊗ V ∗ := V(0) ⊕ V(2)

is the decomposition into the irreducible trivial (V(0)) and adjoint (V(2)) sl2 representations.
Let C1 and C2 denote the two nontrivial circles involved in the merge. Then −ε(C1) = ε(C2).
Moreover, with respect to the chosen bases of V, V ∗ we have:

V(0) = SpanC{v+ ⊗ v− + v− ⊗ v+} ⊂ V ⊗ V ∗.
We conclude that the merge and split maps are nonzero scalar multiple of the composition
of inclusion and projection maps

V(0) ←→ V ⊗ V ∗.
We have shown that each vector space F(C) can be given the structure of a graded sl2–

module, and that the maps associated to morphisms of Cob3/`(A) intertwine the sl2 actions.

Hence F lifts to a functor with values in gRep(sl2), as desired. �

Remark 4. In fact the functor F can take values in the category of graded representations
of gl2, after declaring V to be the defining two-dimensional representation of gl2, V ∗ the
linear dual, and W the trivial two-dimensional representation. In some sense, the distinction
between V and V ∗ in the construction is more natural when F takes values in gRep(gl2),
since V and V ∗ are no longer isomorphic as gl2 representations. On the other hand, the
exterior current algebra which appears later in the paper is that of sl2, not gl2.
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We now have the following.

Proposition 1. The sutured annular Khovanov complex can be obtained from the annular
Khovanov bracket by applying the functor F :

(CKh(P(L)), ∂0) ∼= F([P(L)]).

Proof. This follows immediately from the definition and properties of F and from the defi-
nitions of [P(L)] of (CKh(P(L)), ∂0) given in [5] and [33], respectively. �

The above proposition implies that the sutured annular Khovanov complex of P(L) can
be viewed as a complex in the category gRep(sl2). We can refine this result by introducing
the Schur algebra

S(2, n) := im(ρn),

where ρn : U(sl2)→ EndC(V ⊗n(1) ) denotes the usual representation of U(sl2) on the nth tensor

power of the defining representation of sl2.

Proposition 2. If there exists an essential arc γ ⊂ A intersecting P(L) ⊂ A transversely
in exactly n points, none of which are crossings of P(L), then the sl2 action on CKh(P(L))
factors through the Schur algebra S(2, n).

Proof. Suppose there is an arc γ as in the proposition. Then the number `n of nontrivial
circles in any given resolution C of P(L) satisifies

0 ≤ `n ≤ n and `n ≡ n (mod 2),

and this implies that the representation V ⊗`n(1) appears in V ⊗n(1) as a subrepresentation. It

follows that elements of ker(ρn) ⊂ U(sl2) act trivially on V ⊗`n(1) , and since F(C) ∼= V ⊗`n ⊗
W⊗`t is isomorphic to a direct sum of 2`t copies of V ⊗`n(1) , this means that the sl2 action on

F(C) factors through U(sl2)/ ker(ρn) ∼= im(ρn) = S(2, n). �

Passing to homology, Propositions 1 and 2 immediately imply the following.

Proposition 3. We have SKhi(P(L)) ∼= Hi(F([P(L)])) ∈ gRep(sl2) for all i, so that
SKh(P(L)) is a bigraded representation of sl2. The isomorphism type of this bigraded rep-
resentation is an invariant of the isotopy class of the annular link L. The action of sl2 on
SKh(L) factors through the Schur algebra S(2, n) where n is the wrapping number of L.

Here, the wrapping number of an annular link L ⊂ A×I is defined as the smallest integer
n ≥ 0 such that there exists an arc γ ⊂ A as in Proposition 2, where the minimum is taken
over all diagrams P(L) ⊂ A representing the annular link L.

The above proposition will be strengthened by enlarging the action of sl2 to an action of
sl2(∧) in Proposition 7, which implies Theorem 1.

5. Basic properties of SKh as an sl2 representation

The fact that the sutured Khovanov homology of an annular link is an sl2 representation
implies that is trapezoidal with respect to the sl2 weight space grading, which we have
seen agrees with the k (filtration) grading. We therefore have the following immediate
consequence of Proposition 3.

Corollary 1. Let L ⊂ A× I be an annular link. Then

dimC(SKh(L; k)) ≥ dimC(SKh(L; k′))

whenever k ≡ k′ mod 2 and |k| ≤ |k′|.
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Moreover, the sl2 representation structure on the sutured Khovanov homology of an
annular link gives an alternative way to understand its symmetry (Lemma 2) with respect
to the k–grading. Indeed, the following lemma is readily seen from the chain level definitions
of the raising operator e, the lowering operator f , and the involution Θ on the sutured chain
complex associated to an annular link.

Lemma 5. Let L ⊂ A × I be an annular link and let e, f,Θ be the endomorphisms on
SKh(L) described above. Then e = ΘfΘ.

5.1. Functoriality for Annular Link cobordisms. The sl2–representation structure is
functorial with respect to annular link cobordisms. To state this precisely, we must first
introduce the following closely-related topological categories.

Definition 3. Let Cob4/i(A) denote the category of annular link cobordisms. The objects of

Cob4/i(A) are oriented annular links in general position (i.e., the projection to A× {1/2} is

a diagram). A morphism between links L0 and L1 is a smoothly imbedded oriented surface,
F ⊂ (A × I) × I satisfying ∂F = −(L0 × {0}) q (L1 × {1}), considered modulo isotopy rel
boundary.

Definition 4. Let Comb4(A) denote the category of combinatorial annular link cobordisms.
The objects of Comb4(A) are annular link diagrams, considered up to planar isotopy. The
morphisms are Carter-Saito movies [10], specified by finite sequences of link diagrams, each
related to the next by a Reidemeister move, an elementary Morse move, or a planar isotopy
in A.

We have a canonical functor L : Comb4(A) → Cob4/i(A) obtained by lifting each annular

link diagram to a specific annular link in general position and each Carter-Saito movie to
a specific annular link cobordism with Morse decomposition described by the movie. The
following is an annular version of [5, Thm. 4]:

Proposition 4. The assignment P(L) 7→ [P(L)] extends to a functor

[−] : Comb4(A) −→ Kob/h(A).

Up to signs, this functor factors through the category Cob4/i(A) via the canonical functor

L : Comb4(A)→ Cob4/i(A). In particular, [−] descends to a functor Cob4/i(A)→ Kob/±h(A).

Proof. On generating morphisms of Comb4(A), we define the functor [−] as follows:

• To movies representing Reidemeister moves, we assign the homotopy equivalences
constructed in [5] within the proof of the invariance theorem ([5, Thm. 1]).

• To movies representing elementary Morse cobordisms, we assign the chain maps
obtained by interpreting these Morse cobordisms as the corresponding generating
morphisms of Cob3/`(A).

• For movies representing planar isotopies in A, we use an analogous definition.

In the appendix, we adapt the Carter-Saito theorem [10] to the annular setting. That
is, we show that every (smooth) annular link cobordism can be presented by an annular
Carter-Saito movie, and that two annular Carter-Saito movies represent isotopic annular
link cobordisms if and only if they can be transformed one to the other by a finite sequence
of annular Carter-Saito movie moves. Bar-Natan already proved [5] that the chain maps
associated to Carter-Saito movies are invariant under movie moves when considered up to
sign and homotopy, and so it follows that the functor [−] descends to a functor Cob4/i(A)→
Kob/±h(A), as desired. �
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5.2. The sl2 action via marked points. Let P(L) ⊂ S2 − O− X be a diagram of a link
L ⊂ A × I ⊂ S3 and suppose p1, . . . , pn ⊂ P(L) is a collection of n distinct marked points
on P(L) in the complement of a neighborhood of the crossings. Temporarily forgetting the
data of the basepoint X, recall [21, 22, 16] that we have an action of

An := C[x1, . . . , xn]/(x2
1, . . . , x

2
n)

on the chain complex CKh(P(L)) defined as follows.
Let P ′(L) denote the diagram obtained from P(L) by placing, for each i ∈ {1, . . . , n} a

tiny trivial circle Ci in a region adjacent to pi. We then have

CKh(P ′(L)) ∼= CKh(P(L))⊗An,

along with a map

m : CKh(P(L))⊗An → CKh(P(L))

realized as the composition of the n (commuting) multiplication maps associated to merging
P(L) with C1, . . . , Cn at p1, . . . , pn.

Proposition 5. Suppose L ⊂ A× I ⊂ S3 is an annular link with diagram P(L) ⊂ S2−O−
X ⊂ S2 − O. Let γ be any arc from X to O that misses all crossings of P(L) and intersects
P(L) transversely in n points p1, . . . , pn (whose ordering is determined by the orientation of
γ). Consider the action of An := C[x1, . . . , xn]/(x2

1, . . . , x
2
n) on CKh(P(L)) induced by the

marked points p1, . . . , pn.

(1) Let f : CKh(P(L))→ CKh(P(L)) be the lowering operator of the sl2 action described
in Section 4.2. Then

f = ±
n∑
i=1

(−1)ixi.

(2) Let e : CKh(P(L))→ CKh(P(L)) be the raising operator of the sl2 action described
in Section 4.2. Then

e = ±Θ

(
n∑
i=1

(−1)ixi

)
Θ,

where Θ is the involution described in Lemma 2.

Proof. We verify statement (1) by showing that the chain-level map
∑n
i=1(−1)ixi corre-

sponding to any arc γ from X to O agrees with the chain-level map f described in Section
4.2.

To see this, let PI(L) be a resolution of P(L). Recall from Section 4.2 that the action
of the lowering operator f on the vector space associated to PI(L) is the standard tensor
product representation of the actions of f on the vector spaces associated to each circle of
the resolution considered separately.

Now suppose C is a nontrivial circle of PI(L). Any arc γ as above will then intersect
C in an odd number of points: pi1 , . . . , pik according to their order of intersection with the
oriented arc γ. As the actions of xi1 , . . . , xik on the vector space associated to PI(L) all
agree, we then have

k∑
j=1

(−1)ijxij = (−1)i1xi1 .

Since i1 agrees, mod 2, with the number of nontrivial circles separating C from X, the above
agrees with the action of f on the vector space associated to C described in Section 4.2.
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Similarly, if C is a trivial circle of PI(L), any arc γ will intersect C in even number of

points pi1 , . . . , pik , so the action of
∑k
j=1(−1)ijxij on C is 0, agreeing with the action from

Section 4.2. This concludes the proof of statement (1), and statement (2) now follows from
Lemma 5. �

Remark 5. The reader is warned that although the chain-level maps xi commute with
the ordinary Khovanov differential ∂, they do not commute with the sutured Khovanov
differential ∂0. On the other hand, their alternating sum commutes with ∂0, as does the
involution Θ, but Θ does not commute with ∂.

Remark 6. Recall that it is shown in [16, Prop. 2.2] that the chain-level action of An
described above induces a well-defined action (modulo signs) of

A` := C[X1, . . . , X`]/(X
2
1 , . . . , X

2
` )

on the ordinary Khovanov homology of an `–component link (one need only ensure that
each link component contains at least one marked point). In particular, Xi denotes the map
induced on the ordinary Khovanov homology of L by (any one of) the basepoint(s) marking
the ith component of L.

Recalling that there is a spectral sequence relating SKh(L ⊂ A × I) to Kh(L ⊂ S3), it
is tempting to conclude that the map induced by the lowering operator f on Kh(L) agrees
with g =

∑n
i=1 εiXi for some choices εi ∈ {±1}.

However, the E∞ page of the spectral sequence is the associated graded of Kh(L) with
respect to the induced filtration. As a result, we can only conclude the weaker statement
that the highest-degree terms of the maps agree. More precisely, noting that f is a filtered
map of degree −2 on the filtered complex described in Remark 1, we can regard f as a
filtration-preserving map

f : CKh(L)→ CKh(L){{2}},
where in the above {{n}} is the operator that shifts k–gradings (and hence the induced
filtration) up by 2. Let f∞ denote the map induced by f on the E∞ page of the spectral
sequence associated to the k–filtration, and decompose g = g−2 + g−4 + . . . into its k–
homogeneous terms with respect to the induced k–grading on the E∞ page. Then

f∞ = g−2.

6. SKh and the current algebra sl2(∧)

In this section we extend the action of sl2 on SKh(L) to an action of the exterior current
algebra, sl2(∧). Note that–in contrast to the sl2 action–the sl2(∧) relations hold at the
chain level only up to homotopy. In what follows, we will construct an action of a slightly
larger Lie superalgebra, sl2(∧)dg, on the sutured annular chain complex, then show that it
induces an action of sl2(∧) on the homology. To make these statements precise, we first
review some algebra.

6.1. Chain complexes and Lie superalgebras. Let (C•, ∂) be a Z-graded chain complex.
The Z-grading C• =

⊕
i∈Z C

i induces a Z2 grading

C = Ceven ⊕ Codd, where

Ceven =
⊕
n∈Z

C2n and Codd =
⊕
n∈Z

C2n+1,

and hence the structure of a super vector space. Indeed, C• canonically has the structure
of a Lie superalgebra representation.
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Let End(C•) denote the hom complex of C•, which is a Z-graded super vector space in
its own right:

End(C•) =
⊕
n∈Z

Endn(C•),

Endn(C•) = {f : C• → C•+n}
The differential ∂ ∈ End(C) is a degree one endomorphism. We endow End(C•) with the
structure of a Lie superalgebra by declaring, for f ∈ Endn(C•) and g ∈ Endm(C•),

[f, g] = fg − (−1)nmgf.

The superalgebra End(C•) is also a chain complex, with differential

D : End(C•) −→ End(C•+1), D(f) = [∂, f ].

Let H(End(C•)) be the homology of End(C•). Then there is a canonical morphism of
Lie superalgebras

H(End(C•)) −→ End(H(C•)).

Explicitly, if θ ∈ End(C•) and x ∈ C• are cycles representing homology classes [θ] and
[x], resp., then one makes the well-defined assignment

[θ]([x]) := [θ(x)].

Note that the cycles in (Endn(C•),D) are precisely the chain maps (or skew-chain maps,
depending on the parity of n):

C• → C•[n], 5

and the boundaries are precisely those chain maps that are chain homotopic to 0. Informally,
one views the image of H(End(C•)) under the canonical morphism above as the collection
of (graded) chain maps on C•, modulo homotopy.

6.2. The Lie superalgebra sl2(∧)dg. We now describe a Z–graded Lie superalgebra sl2(∧)dg
that is closely related (cf. Lemma 7) to the Lie superalgebra sl2(∧) defined in Section 2.2.

The underlying Z–graded super vector space of sl2(∧)dg has degree 0 generators {e, f, h}
and degree 1 generators {v2, v−2, d,D} with defining super commutation relations:

• [e, f ] = h;
• [h, e] = 2e;
• [h, f ] = −2f ;
• [e, v2] = 0;
• [e, v−2] = −[f, v2];
• [f, v−2] = 0;
• [h, v2] = 2v2;
• [h, v−2] = −2v−2;
• [d, y] = 0 for all y ∈ {e, f, h, v2, v−2};
• [D, y] = 0 for all y ∈ {e, f, h, v2, v−2};
• [d, d] = [D,D] = [v2, v2] = [v−2, v−2] = 0.
• [v2, v−2] + [d,D] = 0.

Let ṽ0 = [e, v−2] = −[f, v2], and let x = [v2, v−2] = −[d,D] = 1
2 [ṽ0, ṽ0]. Then we have

the following.

Lemma 6. The set {e, f, h, v2, v−2, ṽ0, d,D, x} is a basis of sl2(∧)dg.

5Here “[n]” is the height shift operator on a chain complex: C[n]• := C•+n.
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Proof. An easy computation shows that these elements span sl2(∧)dg. Their linear indepen-
dence follows from the representation on the annular chain complex constructed in Section
4. �

It is clear from the above description that sl2(∧)dg is closely related to sl2(∧). Indeed,
we may regard sl2(∧)dg as a chain complex by declaring the adjoint action of d to be the
differential, as described in the previous subsection. We have the following.

Lemma 7. The homology of sl2(∧)dg taken with respect to the differential [d, ·] is isomorphic
to the direct sum of sl2(∧) and the trivial Lie super algebra:

H(sl2(∧)dg, [d, ·]) ∼= sl2(∧)⊕ C.

Moreover, if (C•, d) is a Z–graded sl2(∧)dg representation, regarded as a chain complex with
differential given by the action of d, then the canonical map

H(sl2(∧)dg)→ End(H(C•, d))

factors through sl2(∧).

Proof. Referring to the bracket relations and Lemma 6, we see that the kernel of [d, ·] is
spanned by {e, f, h, v2, ṽ0, v−2, d, x}, while the image is spanned by x. The obvious map
H(sl2(∧)dg, [d, ·]) → sl2(∧) which takes e, f, h to e, f, h, takes v2, v−2 to v2, v−2, ṽ0 to v0,
and d to 0 is therefore surjective, with 1–dimensional kernel. Moreover, if C• is any sl2(∧)dg–
representation, then [d] ∈ H(sl2(∧)dg, [d, ·]) will act trivially on H(C•, d). �

6.3. The current algebra sl2(∧) and its action on SKh(L). We are now ready to
extend the action of sl2 on CKh(L) to an action of sl2(∧)dg by defining

Φ : sl2(∧)dg −→ End(CKh(L))

via

• v2 7→ ∂Lee+ ,
• v−2 7→ ∂−,
• d 7→ ∂0,
• D 7→ ∂Lee0 .

Proposition 6. The above assignment defines a homomorphism of Lie superalgebras

Φ : sl2(∧)dg −→ End(CKh(L)).

Proof. The sl2 relations involving only {e, f, h} were established in the course of proving
Proposition 3. The relations involving commutators between pairs of degree one elements
{v−2, v2, d,D} follow immediately from the relations in Lemma 3. The mixed relations
involving commutators of one of {e, f, h} with one of {v−2, v2, d,D} follow from a straight-
forward case-by-case check (which we omit) along the three possible types of edges in the
cube of resolutions. �

Passing to homology and using Lemma 7, we arrive at the following proposition, which
completes the proof of Theorem 1 from the introduction.

Proposition 7. The homomorphism of Lie superalgebras Φ : sl2(∧)dg −→ End(CKh(L))
induces a homomorphism of Lie superalgebras

Ψ : sl2(∧) −→ End(SKh(L)).

This action of sl2(∧) is functorial for annular link cobordisms.
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Proof. Since the generator d of sl2(∧)dg is sent to the annular differential ∂0, the homology
of sl2(∧)dg taken with respect to d acts on SKh(L). By Lemma 7, the action of this homology
factors through the current algebra sl2(∧).

What remains is to show that any annular link cobordism commutes (up to homotopy)
with the operators v2, v−2. To see this, let m be the chain map induced on the ordinary
Khovanov chain complex by an annular link cobordism. Write m = m0 + m−, where
m0 preserves the annular k-grading and m− has k-degree −2. The claim is that m0 and
v−2(= ∂−) commute up to homotopy. Since m is a chain map, Khovanov’s differential
∂ = ∂0 + ∂− commutes with m, and it follows that

m0∂− − ∂−m0 +m−∂0 − ∂0m− = 0.

Thusm− provides a homotopy between [m0, ∂−] and 0, as desired. The analogous statements
for v2 follows from the above, combined with the observations (see Lemmas 2 and 3) that
∂Lee+ = Θ∂−Θ and Θ commutes with m0. �

Remark 7. A curious point to note in the proof of Proposition 7 is that most of the proof
works equally well if we use the annular Lee deformation ∂Lee0 in place of the usual annular
differential ∂0: the commutation relations that held on the nose at the chain level still
hold, and the differential/homotopy roles of ∂0 and ∂Lee0 are simply exchanged. (This is the
symmetry between d and D in sl2(∧)dg.) Indeed, one quickly checks that Lemma 7 holds
equally well with “D” replacing “d” everywhere in the statement and the proof. Thus the
current algebra sl2(∧) also acts on the homology of CKh(P(L)) taken with respect to the
differential ∂Lee0 . On the other hand, the homology with respect to ∂Lee0 is neither functorial
for annular link cobordisms nor is it an annular link invariant.

The observant reader may now wonder whether the sl2(∧)dg–action on the sutured an-
nular chain complex CKh(L) gives rise to any interesting new actions on Khovanov or Lee
homology. Sadly, the answer is no, as we see in Lemmas 8 and 9. In what follows, let L
denote the 2–dimensional abelian Lie superalgebra with a single degree 0 generator, y0, and
a single degree 1 generator, y1.

Lemma 8. The homology H(sl2(∧)dg, [d + v−2, ·]) has a codimension 1 direct summand
isomorphic to L. Moreover, if (C•, d+v−2) is any Z–graded sl2(∧)dg representation, regarded
as a chain complex with differential d+ v−2, then the canonical map

H(sl2(∧)dg)→ End(H(C•, d+ v−2))

factors through L.

Proof. The set {[f ], [v2 + D], [d]} is a basis for H(sl2(∧)dg, [d + v−2, ·]), and we calculate
that all pairwise brackets are nullhomologous. The map

H(sl2(∧)dg, [d+ v−2, ·])→ L
sending [f ] 7→ y0, [v2 + D] 7→ y1, and [d] 7→ 0 is a Lie superalgebra homomorphism, and
[d] = [d+ v−2] will act trivially on the homology of any sl2(∧)dg–representation. �

In particular, the action of sl2(∧)dg on the annular chain complex CKh(L) induces two
commuting endomorphisms of Kh(L), one of which can be described in terms of the standard
action by basepoints on Khovanov homology (compare Section 5.2) and the other of which
can be described in terms of the Lee deformation.

Lemma 9. The homology H(sl2(∧)dg, [d + v−2 + D + v2, ·]) has a codimension 1 direct
summand isomorphic to L. Moreover, if (C•, d + v−2 + D + v2) is any Z–graded sl2(∧)dg
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representation, regarded as a chain complex with differential d + v−2 + D + v2, then the
canonical map

H(sl2(∧)dg)→ End(H(C•, d+ v−2 +D + v2))

factors through L.

Proof. Similar. In this case, the set {[e+ f ], [d+ v−2], [d+ v−2 +D+ v2]} is a basis for the
homology. �

Thus the action of sl2(∧)dg on the annular chain complex CKh(L) induces two commuting
endomorphisms of the Lee homology of L. It is straightforward to verify (e.g., by using the
canonical generators described in [32, Sec. 2.4]) that the endomorphism represented by
[e+ f ] acts by scalar multiplication on each Lee homology class associated to an orientation
of L. The endomorphism represented by [d+v−2] increases homological grading by 1, hence
must act trivially, since Lee homology is supported in even homological gradings [25, Prop.
4.3].

7. The symmetric group and the homology of cables

In this section we explore the further symmetry exhibited by the sutured annular Kho-
vanov homology of a cable.

In what follows, let TLn(1) denote the endomorphism algebra6 of the nth tensor product
of the defining sl2 representation:

TLn(1) := EndU(sl2)(V
⊗n).

The standard presentation of TLn(1) has generators {ei}n−1
i=1 and relations

e2
i = −2ei, eiej = ejei for i 6= j ± 1, eiei±1ei = ei.

The goal of this section is to establish the following theorem.

Theorem 2. Let K ⊂ S3 be a knot, and let L = Kn,nm ⊂ A × I denote its m–framed n–
cable. Then there is an action of the symmetric group Sn on the sutured annular Khovanov
homology, SKh(L). This Sn-action enjoys the following properties:

(1) it commutes with the sl2(∧)-action;
(2) it preserves the (i, j′, k) tri-grading on SKh(L).
(3) it is natural with respect to smooth annular framed link cobordisms;
(4) it factors through the Temperley-Lieb algebra TLn(1).

Since the Sn action will be defined using annular link cobordisms, the fact that such an
action commutes with the sl2(∧) action and preserves the trigrading is immediate. Thus
the rest of this section will be devoted to establishing the last two claims.

7.1. Cobordism maps associated to tangles. Let K be a smooth framed oriented knot
in A× I and

ι : S1 ×D2 −→ A× I
an imbedding which sends the circles S1 × {0} and S1 × {1} respectively to K and to a
longitude of K specifying the framing, where D2 is the closed unit disk in C and S1 := ∂D2.
Moreover, let Pn ⊂ int(D2) be a collection of n evenly spaced points on the real axis. In
this situation, the n-cable of K can be defined as follows:

Definition 5. The n-cable of K is the n-component link Kn := ι(S1 × Pn).

6The notation emphasizes that we are taking the q = 1 specialization of TLn(q), the endomorphism
algebra of the nth tensor product of the defining Uq(sl2) module.
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Figure 1. Schematic depiction of a tangle T ⊂ D2 × I (left) and the
associated surface of revolution S1×T ⊂ S1×D2×I (right). The cobordism
KT : Kn → Kn is obtained from S1×T by applying the imbedding ι : S1×
D2 × I → A× I × I.

Now suppose T is a smooth (n, n) tangle, i.e., a smooth properly imbedded 1-manifold
T ⊂ D2 × I such that ∂T = Pn × ∂I. To T , we can associate the “surface of revolution”
S1 × T ⊂ S1 ×D2 × I.

Definition 6. The T -cable cobordism of K is the link cobordism KT : Kn → Kn defined
by KT := ι(S1 × T ) where ι : S1 × D2 × I → A × I × I denotes the imbedding given by
ι(θ, z, t) := (ι(θ, z), t) (see Figure 1).

Remark 8. If T represents the elementary braid group generator σi, then KT can alterna-
tively be described as the link cobordism traced out by an isotopy of Kn which moves the
ith strand of Kn around the (i+ 1)st strand, thereby exchanging these two strands.

Since the formal Khovanov bracket of annular links is functorial with respect to smooth
annular link cobordisms (by Proposition 4), the T -cable cobordism of K induces a chain
map

[KT ] : [Kn] −→ [Kn],

which is well-defined up to sign and homotopy. Likewise, KT induces maps

φKT : SKh(Kn) −→ SKh(Kn) and φ′KT : Kh′(Kn) −→ Kh′(Kn) ,

where Kh′(Kn) denotes the Lee homology of Kn (viewed as a link in R3). Note that the
latter maps are well-defined up to sign.

7.2. Fixing the sign ambiguity. In the following, let Ei, Σi, and Σ−1
i denote (n, n)

tangles which represent respectively the generator ei of the Temperley-Lieb algebra TLn(a),
the generator σi of the braid group Bn, and the inverse of the generator σi ∈ Bn (see
Figure 2).

The goal of this subsection is to pin down the sign in the definition of the maps [KT ],
φKT , and φ′KT , for the case where T is one of the above tangles. We will need the following
theorem, due to Rasmussen:

Theorem 3 (Rasmussen [31, Prop. 3.2]). The Lee homology group Kh′(L) has a canonical
basis whose vectors correspond bijectively to possible orientations on L. Furthermore, if
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Figure 2. The tangles Ei (left) and Σi (right).

S : L → L′ is a smooth link cobordism with no closed components, then the matrix entries
of S relative to the canonical bases of Kh′(L) and Kh′(L′) satisfy

(φ′S)o′o = 2−χ(S)

{
εo′o if o ∪ o′ extends over S,

0 else,

for any two orientations o and o′ on L and L′, where εo′o ∈ {±1}.

Remark 9. The canonical basis vectors referred to in this theorem are rescaled versions of
the basis vectors introduced by Lee in [25] and used by Rasmussen in [32].

The above theorem implies that if T = Σi or T = Σ−1
i , then

(φ′KT )opop ∈ {±1}

where op denotes the parallel orientation of Kn, i.e., the orientation for which all strands
of Kn are oriented parallel to the orientation of K. Likewise, the theorem implies that if
K = Ei, then

(φ′KT )oaoa ∈ {±1}
where oa denotes the alternating orientation of Kn, i.e., the orientation for which the strands
of Kn are alternatingly oriented parallel and antiparallel to K, in such a way that the
leftmost strand of Kn (corresponding to the leftmost point of Pn ⊂ int(D2)∩R) is oriented
parallel to K.

Now note that

φKT = F([KT ]) and φ′KT = F ′([KT ]) ,

where F is the functor defined in Section 4 and F ′ denotes Lee’s TQFT [32]. Since F and
F ′ are additive functors, it follows that any sign choice for [KT ] induces corresponding sign
choices for φKT and φ′KT , and we can therefore pin down the sign of [KT ] (and hence of
φKT ) by imposing the following conventions:

Convention 1. For T = Σi or T = Σ−1
i , define the sign of [KT ] to be such that the

corresponding map on Lee homology satisfies (φ′KT )opop = +1.

Convention 2. For T = Ei, define the sign of [KT ] to be such that the corresponding map
on Lee homology satisfies (φ′KT )oaoa = −1.

Convention 1 immediately implies:

Proposition 8. The assignments σi 7→ [KΣi ] and σ−1
i 7→ [KΣ−1

i ] define a representation
ρ : Bn → EndC([K

n]) of the braid group Bn where C denotes the bounded homotopy category
of Bar-Natan’s cobordism category Mat(Cob3

/`(A)).

Proof. Since the cobordism maps induced on the formal Khovanov bracket are isotopy in-

variants when considered up to sign and homotopy, it is clear that the maps [KΣi ], [KΣ−1
i ] ∈
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EndC([K
n]) satisfy the braid group relations up to possible signs. Moreover, Rasmussen’s

theorem together with Convention 1 implies

(φ′KΣi )oop = (φ′
KΣ
−1
i

)oop =

{
1 o = op,

0 o 6= op,

and so the canonical basis vector associated to the orientation op is an eigenvector for φ′
KΣi

and for φ′
KΣ
−1
i

for the eigenvalue 1. Thus, the maps φ′
KΣi

and for φ′
KΣ
−1
i

trivially satisfy

the braid group relations when restricted to this eigenvector, and consequently it follows

that the maps [KΣi ] and [KΣ−1
i ] satisfy the braid group relations on the nose (not just up

to sign!). �

7.3. Temperley-Lieb algebra relations for cobordism maps. We will now show that
the representation ρ described in Proposition 8 factors through the symmetric group Sn.
This will in turn imply that the corresponding braid group action on SKh(Kn) (given
by σi 7→ φKΣi and σ−1

i 7→ φ
KΣ
−1
i

) factors through Sn, and thus the main statement of

Theorem 2 will follow.
Specifically, we will prove the following proposition, which holds under the assumption of

Conventions 1 and 2, and which shows that [KΣi ], [KΣ−1
i ] = [KΣi ]−1, and [KEi ] satisfy the

symmetric group relation σi = σ−1
i and the Kauffman bracket skein relations σi = a+a−1ei

and σ−1
i = a−1 + aei at a = 1:

Proposition 9. The endomorphisms [KΣi ], [KΣ−1
i ], [KEi ] ∈ EndC([K

n]) satisfy:

[KΣi ] = id[Kn] +[KEi ] = [KΣ−1
i ] .

Instead of proving this proposition directly, we break it into two lemmas:

Lemma 10. There exist signs εij ∈ {±1}, i = 1, . . . , n− 1, j = 1, . . . , 4, such that

[KΣi ] = εi1 id[Kn] +εi2[KEi ] and [KΣ−1
i ] = εi3 id[Kn] +εi4[KEi ] .

Lemma 11. εij = +1 for all i, j.

The proof of Lemma 10 will be deferred to Subsection 7.4.

Proof of Lemma 11. By Lemma 10, we have

[KΣi ] = εi1 id[Kn] +εi2[KEi ]

for εi1, εi2 ∈ {±1}, and hence the corresponding maps in Lee homology satisfy

φ′KΣi = εi1 id +εi2φ
′
KEi .

By considering the matrices of the above maps relative to the basis of Theorem 3 and
comparing the diagonal entries corresponding to the parallel orientation op, we thus obtain

1 = εi1 + 0

and hence εi1 = 1, where we have used Convention 1 and Theorem 3 to conclude that
(φ′
KΣi

)opop = 1 and (φ′
KEi

)opop = 0. Similarly, by comparing the diagonal entries corre-
sponding to the alternating orientation oa, we obtain

0 = εi1 − εi2 = 1− εi2
and hence εi2 = 1, where we have used Theorem 3 and Convention 2 to conclude that
(φ′
KΣi

)oaoa = 0 and (φ′
KEi

)oaoa = −1. The proof of εi3 = εi4 = 1 is analogous. �
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We can now use Proposition 9 to prove the following proposition, which implies that the
endomorphisms [KEi ] satisfy the Temperley-Lieb algebra relations

(1) e2
i = −(a2 − a−2)ei,

(2) eiei±1ei = ei,
(3) eiej = ejei whenever |i− j| ≥ 2,

at a = 1:

Proposition 10. The endomorphisms [KEi ] ∈ EndC([K
n]) satisfy

(1) [KEi ] ◦ [KEi ] = −2[KEi ],
(2) [KEi ] ◦ [KEi±1 ] ◦ [KEi ] = [KEi ],
(3) [KEi ] ◦ [KEj ] = [KEj ] ◦ [KEi ] = −2[KEi ] whenever |i− j| ≥ 2,

where all relations hold in EndC([K
n]).

Proof. (1) By Proposition 9, we have [KEi ] = [KΣi ]− id[Kn ], and hence

[KEi ]2 = ([KΣi ]− id[Kn])
2 = 2 id[Kn]−2[KΣi ] = −2[KEi ] ,

where in the second equaltity we have used that [KΣi ] squares to id[Kn] because [KΣi ]−1 =

[KΣ−1
i ] = [KΣi ] by Propositions 8 and 9.

(2) Since the chain maps induced by annular link cobordisms are isotopy invariants when
considered up to sign and homotopy and since the tangles Ei ◦Ei±1 ◦Ei and Ei are isotopic,
it is clear that (2) holds up to an overall sign. It is therefore clear that the induced maps in
Lee homology satisfy

φ′KEi ◦ φ′KEi±1 ◦ φ′KEi = εφ′KEi .

for an ε ∈ {±1}. To conclude that ε = 1, we now use Proposition 9 to write the right-hand
side of the above equation as

ε(φ′KΣi − id)

and the left-hand side as

(φ′KΣi − id) ◦ (φ′
KΣi±1 − id) ◦ (φ′KΣi − id) = φ′KΣi ◦ φ′KΣi±1 ◦ φ′KΣi − 2 id +δ ,

where δ := −φ′
KΣi
◦ φ′

KΣi±1
− φ′

KΣi±1
◦ φ′

KΣi
+ 2φ′

KΣi
+ φ′

KΣi±1
. This yields

φ′KΣi ◦ φ′KΣi±1 ◦ φ′KΣi − 2 id +δ = ε(φ′KΣi − id) ,

and by considering the matrices of the above maps relative to the basis of Theorem 3 and
comparing the diagonal entries corresponding to the alternating orientation oa, we obtain

ε′ − 2 + 0 = ε(0− 1)

for an ε′ ∈ {±1}, where we have used Theorem 3 to conclude that

(φ′KΣi ◦ φ′KΣi±1 ◦ φ′KΣi )oaoa ∈ {±1} and (δ)oaoa = (φ′KΣi )oaoa = 0.

However, since ε, ε′ ∈ {±1}, the equation ε′ − 2 = −ε can only hold if ε′ = ε = 1, and hence
(2) follows.

(3) Relation (3) follows because [KEi ] can be written as [KEi ] = [KΣi ] − id[Kn] (by

Proposition 9) and because the [KΣi ] satisfy the braid group relations (by Proposition 8). �
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Figure 3. Movie MΣi for the cobordism KΣi : Kn → Kn for the case
where K is a 0-framed unknot. In this figure, we have only depicted the
ith and the (i+ 1)st strand of Kn, as the other strands remain unchanged
over the course of the movie.

Figure 4. Movie MEi for the cobordism KEi : Kn → Kn for the case
where K is a 0-framed unknot.

7.4. Proof of Lemma 10. In this subsection, we will assume that the knot K ⊂ A× I is
represented by a diagram on A such that the framing of K is the blackboard framing. In
the relevant figures, the hole of the annulus A will be represented by an X. The annulus
itself will not be shown.

To prove Lemma 10, we will proceed in two steps: we will first prove the lemma in the
special case where K is a 0-framed unknot, and then generalize our arguments to the case
where K is an arbitrary framed oriented knot in A× I. We will only prove that

[KΣi ] = εi1 id[Kn] +εi2[KEi ]

for εi1, εi2 ∈ {±1}, as the proof of the second equation in Lemma 10 is nearly identical.
Special case. In the case where K is a 0-framed unknot, the cobordism KΣi can be

represented by the movie MΣi shown in Figure 3. The first two diagrams in this movie
(henceforth denoted D1 and D2) differ by a Reidemeister II move, and the last two diagrams
(henceforth denoted D3 and D4) differ by an inverse Reidemeister II move. The middle two
diagrams differ by a planar isotopy which moves crossing 2 along the dashed arrow while
fixing crossing 1, so that at the end of the isotopy crossing 2 comes to lie above crossing 1.

The chain map [KΣi ] : [D1]→ [D4] induced by MΣi is thus given by

[KΣi ] = G ◦Ψ ◦ F ,

where F denotes the chain map associated to the Reidemeister II move between D1 and D2,
Ψ denotes the chain map induced by the isotopy between D2 and D3, and G denotes the
chain map associated to the inverse Reidemeister II move between D3 and D4. Recalling
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Figure 5. Movie MΣi for the cobordism KΣi : Kn → Kn.

the definition of F and G from [5, Subs. 4.3], it thus follows that, up to possible signs, [KΣi ]
is given by the rightward pointing arrows in the following diagram:

[D1]0
F // [D2]0

Ψ // [D3]0
G // [D4]0

id //

id

''

id
77

f ((

⊕ ⊕

ψ
//

g

77

In this diagram, the four columns represent the 0th chain groups of the formal Khovanov
brackets of Dj for j = 1, . . . , 4, and the arrows labeled f , ψ, and g represent morphisms
given by cobordisms in A×I. It turns out that, up to possible signs, f , ψ, and g are precisely
the morphisms induced by moves between consecutive diagrams in the movie MEi shown
in Figure 4. In the movie MEi , the middle two diagrams differ by a planar isotopy which
moves the interior of the red box along the dashed arrow and thereby turns the small circle
in the second diagram into the elongated component in the third diagram, and vice versa.
Moreover, the first two diagrams in MEi differ by a saddle move followed by creation of a
small circle, and the last two diagrams differ by annihilation of a small circle followed by a
saddle move. (Note that there should be an intermediate diagram between the first (resp.,
last) two diagrams in the movie MEi , but we chose to suppress this intermediate diagram
to make Figures 3 and 4 look similar).

Ignoring possible signs, it now follows from the above diagram that

[KΣi ] = (id ◦ id ◦ id) + (g ◦ ψ ◦ f) = id[Kn] +[KEi ] ,

as desired.
General Case. Now suppose K is an arbitrary framed oriented knot in A × I. In this

case, the cobordisms KΣi and KEi can be described by the movies MΣi and MEi shown in
Figures 5 and 6, respectively.

Note that these movies differ from the ones in Figures 3 and 4 in two ways: firstly each
diagram in Figures 5 and 6 contains a “knotted” part, which is represented by a box labeled
K. Explicitly, this box stands for an n-cable diagram of a (1, 1) tangle whose closure is the
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Figure 6. Movie MEi for the cobordism KEi : Kn → Kn.

Figure 7. Sliding the red box across other strands.

knot K. Secondly, the movies in Figures 5 and 6 contain intermediate diagrams, which are
represented in the figures by dots between the second and the second-to-last diagram. These
intermediate diagrams arise because one has to use Reidemeister moves of type III (in the
case of Figure 5) and type II (in the case of Figure 6) to move the red box across possible
over- and understrands located in the box labeled K. Local pictures of such Reidemeister
moves are shown in Figure 7.

The chain map [KΣi ] : [Kn]→ [Kn] associated to the movie MΣi is now given by

[Kn] = G ◦Ψ` ◦ . . . ◦Ψ2 ◦Ψ1 ◦ F ,

where F and G are as in the case where K is a 0-framed unknot, and Ψ1,Ψ2, . . . ,Ψ` are
the chain maps induced by the Reidemeister III moves. Comparing with [5, Subs. 4.3], one

sees that each map Ψj :

[ ]
→
[ ]

has three components, which are denoted by id,

νj , and ψj in the following diagram:

[ ]
id // [ ]

[ ]
ψj //

ϕj

OO
νj

<<

[ ]

ϕj+1

OO

Here, the two columns represent the formal Khovanov brackets of and of , written

as mapping cones of chain maps ϕj and ϕj+1, where ϕj and ϕj+1 are induced by saddle
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cobordisms between the two possible resolutions of the crossing labeled 2. Moreover, ψj is
precisely the chain map induced by the movie pictured in the right half of Figure 7.

The chain map [KΣi ] associated to the movie MΣi is thus given by the composition of
the rightward pointing arrows in the following diagram, in which f and g are as in the case
where K is a 0-framed unknot:

id // · · · id //

id

%%
id

88

f &&

⊕ ⊕

ψ1

//

ν1

AA

· · ·
ψ`

//

ν`

AA

g

99

The lemma now follows from:

Claim. The maps ν1, ν2, . . . , ν` do not contribute to [KΣi ]. That is, up to possible signs,
we have

[KΣi ] = (id ◦ . . . ◦ id) + (g ◦ ψ` ◦ . . . ◦ ψ1 ◦ f) = id[Kn] +[KEi ] ,

as desired.

Proof of the claim. Let D1, . . . , D`+3 be the link diagrams that appear in the movie MΣi .
We will say that a crossing of Dj has type 1 (resp., type 2) if it is one of the crossings
that were already present in D1 (resp., if it is one of the two crossings labeled 1 and 2 in
Figures 5 and 7). Moreover, we will regard [Dj ] as a bicomplex, where the first and the
second differential in the bicomplex are given by all edge-maps in the resolution cube of Dj

which correspond to crossings of type 1 and type 2, respectively. Corresponding to the two
differentials, there are two cohomological gradings, denoted i1 and i2, whose sum is equal
to the total cohomological degree on [Dj ]. (Explicitly, these two gradings are defined by
im := km − nm−, where km denotes the number of 1-resolution at crossings of type m, and
nm− denotes the number of negative crossings of type m, with respect to a fixed orientation
for Kn).

Now note that each νj raises the i2-degree by 1 (and hence lowers the i1-degree by 1).
Indeed, this follows because νj turns a 0-resolution the crossing labeled 2 into a 1-resolution
while leaving the resolution at the crossing labeled 1 unchanged. (Here, we assume that
crossings are labeled as in Figures 5 and 7). Moreover, it is easy to see that all other maps
in the above diagram preserve the i1- and the i2-degree. It thus follows that the chain map
[KΣi ] : [D1]→ [D`+3] can be written as

[KΣi ] = [KΣi ]0 + [KΣi ]+ ,

where [KΣi ]0 preserves the i2-degree, and [KΣi ]+ strictly raises the i2-degree. But since
[D1] and [D`+3] are supported in i2-degree 0 (essentially be definition of the i2-degree), it
follows that [KΣi ]+ has to be zero, and hence the νj cannot contribute to [KΣi ] because
they could only contribute to [KΣi ]+. �

Proposition 11. If S : K1 → K2 is a framed annular knot cobordism, then there is an
induced homomorphism of Sn representations SKh(Kn

1 )→ SKh(Kn
2 ).
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Figure 8. Tangles ∪n,n+2 and ∩n+2,n.

Proof. Let S : K1 → K2 be a framed knot cobordism. Then the n-cable of S (defined by
taking n parallel copies of S) is a link cobordism Sn : Kn

1 → Kn
2 , and hence there is an

induced map
SKh(Kn

1 ) −→ SKh(Kn
2 ).

To show that this map commutes with the Sn actions, we first note that if Σi is one of the
generators shown in Figure 2, then the maps

[Sn] ◦ [KΣi
1 ] and [KΣi

2 ] ◦ [Sn]

agree up to an overall sign because the cobordisms

Sn ◦KΣi
1 and KΣi

2 ◦ Sn

are isotopic.
Now let op and o′p denote the parallel orientations of Kn

1 and Kn
2 (i.e., the orientations

for which all strands of the n-cable are oriented parallel to the orientation of the original
knot). Since the orientations op and o′p are consistent with the parallel orientation of Sn,
Theorem 3 implies that the matrix entry (φ′Sn)o′pop of the induced map in Lee homology is

nonzero. Moreover, Convention 1 implies that the matrix entries (φ′
K

Σi
1

)opop and (φ′
K

Σi
2

)o′po′p
are equal to 1, and Theorem 3 shows that all other entries in the same row and the same
column of the matrices of φ′

K
Σi
1

and φ′
K

Σi
2

are 0. Now a direct calculation shows that

(φ′Sn ◦ φ′
K

Σi
1

)o′pop and (φ′
K

Σi
2

◦ φ′Sn)o′pop

are both equal to (φ′Sn)o′pop , and since (φ′Sn)o′pop is nonzero, this means that the signs of

φ′Sn ◦ φ′
K

Σi
1

and φ′
K

Σi
2

◦ φ′Sn have to be the same.

Finally, since Lee homology and sutured Khovanov homology can be obtained from the
formal Khovanov bracket by applying additive functors, the same result remains true for
the maps [Sn] ◦ [KΣi

1 ] and [KΣi
2 ] ◦ [Sn] and for the induced maps in sutured Khovanov

homology. �

7.5. Direct limits. Let K be an oriented, framed knot in A × I. There is a natural

Temperley-Lieb cobordism S
[n,n+2]
k from the n-cable Kn to the n + 2-cable Kn+2, defined

by

S
[n,n+2]
k := K∪n,n+2 = τ(S1 × ∪n,n+2),

where ∪n,n+2 is the cup tangle shown in the left half of Figure 8, and τ is the imbedding
τ : S1 ×D2 × I → A× I × I introduced in Definition 6.

Lemma 12. The map induced by S
[n,n+2]
k gives an injection

SKh(Kn) ↪→ SKh(Kn+2).

Proof. Dually to S
[n,n+2]
k , we have a cobordism S

[n+2,n]
k := K∩n+2,n , where ∩n+2,n is the

tangle shown in the right half of Figure 8. The composition

SKh(Kn)→ SKh(Kn+2)→ SKh(Kn)
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of the maps induced by S
[n,n+2]
k and S

[n+2,n]
k is ±2id. Thus the first map SKh(Kn) →

SKh(Kn+2) is injective. �

As a result, we may form the direct limits

SKheven(K) = lim−→
n

SKh(K2n),

SKhodd(K) = lim−→
n

SKh(K2n+1).

These spaces are invariants of the framed knot K, and we expect them to have interesting
symmetry. In particular, note that both SKheven(K) and SKhodd(K) have commuting
actions of sl2(∧) and the infinite symmetric group S∞ = lim−→Sn. Commuting actions of
sl2 and the infinite symmetric group have appeared in the literature recently in connection
with the representation theory of infinite-dimensional Lie algebras (see for example [34] and
the references therein). We therefore pose the following question.

Question 1. Can one construct actions of the infinite-dimensional affine Lie algebra ŝl2 or
the Virasoro algebra on the homology groups SKheven(K) and SKhodd(K)?

7.6. Colored SKh. Let K be an oriented, framed knot in A× I. We define the n-colored
sutured Khovanov homology of K as the subspace

SKhn(K) := SKh(Kn)Sn ⊂ SKh(Kn)

of Sn invariants inside SKh(Kn). This definition is motivated by the following result, which
holds for ordinary Khovanov homology of n-cables of knots in R3:

Theorem 4 ([35]). Let K be an oriented, framed knot in R3. Then the subspace of Sn in-
variants inside the Khovanov homology of Kn (with coefficients in a field of characteristic 0)
is isomorphic to Khovanov’s categorification of the non-reduced n-colored Jones polynomial
of K [23].

8. The category of finite-dimensional representations of sl2(∧)

Let rep(sl2(∧)) denote the category of finite-dimensional graded representations of sl2(∧).
In this section we give a quiver description of the category rep(sl2), which is seen to be equiv-
alent to the category of finitely-generated graded representations of of a finite-dimensional
Koszul algebra. We also give a quiver description of the category of finite-dimensional
graded representations of sl2(∧)dg.

Let Γ denote the quiver with vertex set N = {0, 1, 2, . . . } and a single oriented edge from
vertex i to each of the vertices i − 2, i and i + 2. (Thus the underlying graph of Γ has
two connected components, one of which contains the odd vertices and the other of which
contains the even vertices.) We denote the individual edges of Γ by αi, βi, and εi as in the
picture below.
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0 2 4 6

1 3 5

ε0 ε2 ε4 ε6

α0 α2 α4

β0 β2 β4

ε1 ε3 ε5

α1 α3

β1 β3

. . .

Proposition 12. The category rep(sl2(∧)) is equivalent to the category of representations
of the quiver Γ with the following relations. For all i ∈ N we have

• αi+2αi = 0;
• βi−2βi = 0;
• εi+2αi + αiεi = 0;
• εiβi + βiεi+2 = 0;
• βiαi + αi−2βi−2 + ε2i = 0; and

• βiαi + i2

4(i+3)ε
2
i = 0.

By convention, we take αi = βi = εi = 0 in the above relations when i < 0.

Proof. We describe the functor Q from sl2(∧) representations to Γ representations which
gives the equivalence. Let M be a finite-dimensional representation of sl2(∧), and for i ∈ N,
let Ei = {m ∈M : h(m) = im and e(m) = 0} denote the space of highest weight vectors of
M regarded as a finite-dimensional representation of sl2. Then the commutation relations
between e and vj , j = 2, 0,−2, give

• v2 : Ei → Ei+2,
• v0 : Ei → Ei ⊕ f(Ei+2), and
• v−2 : Ei → Ei−2 ⊕ f(Ei)⊕ f2(Ei+2).

Moreover, for m ∈ Ei we may write

v0(m) = pi(m)− 2

i+ 2
fv2(m),

and

v−2(m) = qi−2(m) +
1

i
fpi(m)− 1

(i+ 1)(i+ 2)
f2v2(m),

where pi(m) ∈ Ei and qi−2(m) ∈ Ei−2.
Now, setting

αi = (i+ 3)v2 : Ei −→ Ei+2,

εi =
1

i
pi : Ei −→ Ei, and

βi =
1

i+ 2
qi : Ei+2 −→ Ei,

the defining relations [vk, vl] = 0 for k, l ∈ {2, 0,−2} give rise to the relations given in the
theorem. The inverse functor Q−1 takes a representation E of the quiver Γ and declares the
vector space Ei to be the space of highest weight vectors of weight i; this specifies the action



ANNULAR KHOVANOV HOMOLOGY AND KNOTTED SCHUR-WEYL REPRESENTATIONS 31

of e, f, h on Q−1(E). The action of v2, v0, v−2 on highest weight vectors is then determined
by the representation of the quiver, together with

v0(m) = pi(m)− 2

i+ 2
fv2(m),

v−2(m) = qi−2(m) +
1

i
fpi(m)− 1

(i+ 1)(i+ 2)
f2v2(m),

and the commutation relations between sl2 and v2, v0, v−2 determine the action on the rest
of the representation. It is then clear that Q and Q−1 are inverse equivalences. �

Remark 10. An analog of the theorem above for the (non super) current Lie algebra
sl2(V(1)), where V(1) is the 2-dimensional irrep of sl2, is due to Loupias [26]; see also [18].

9. Examples

9.1. Schur-Weyl representation and trivial braid closures. Recall that if V = C2 is
the defining representation of sl2, then we have a natural action of Sn on the n–fold tensor
product, extended linearly from:

σ(v1 ⊗ . . .⊗ vn) := vσ−1(1) ⊗ . . .⊗ vσ−1(n)

for σ ∈ Sn, vi ∈ V . We also have the induced tensor product action of sl2, extended
C–linearly from:

x(v1 ⊗ . . .⊗ vn) :=

n∑
i=1

v1 ⊗ . . .⊗ x(vi)⊗ . . .⊗ vn

for x ∈ sl2. These actions commute. We will refer to the resulting action of sl2 × Sn on
V ⊗n as the Schur-Weyl representation.

Remark 11. Note that strictly speaking, in what follows we will be considering the Schur-
Weyl representation on V ⊗d

n
2 e ⊗ (V ∗)⊗b

n
2 c (where the order of the terms in the tensor

product alternates between V and V ∗), using the isomorphism φ : V → V ∗ determined by
φ(v±) = ±v̄±. As a consequence, the action of the transposition (i j) ∈ Sn on a tensor
product of standard basis vectors will carry the sign (−1)i−j .

Proposition 13. Let 1n denote the trivial n–strand braid and 1̂n its closure, understood as
the 0–framed n–cable of the unknot.

(1) The actions of v−2, v0, v2 ∈ sl2(∧) on SKh(1̂n) are trivial, hence the action of sl2(∧)

on SKh(1̂n) reduces to an action of sl2.

(2) The commuting actions of sl2 and Sn on SKh(1̂n) agree with the Schur-Weyl rep-
resentation.

Proof. Using the functor F described in Section 4.2 applied to the crossingless diagram for
1̂n, we see that as an sl2–representation, SKh(1̂n) ∼= V ⊗d

n
2 e ⊗ (V ∗)⊗b

n
2 c ∼= V ⊗n and is

concentrated in (i, j′)–grading (0, 0). It follows that the actions of v−2, v0, v2 ∈ sl2(∧) are
trivial, as each shifts the i grading by 1.

We would now like to see that the action of Sn on SKh(1̂n) agrees with the standard
commuting action of Sn in the Schur-Weyl representation. If we regard a standard basis
element of SKh(1̂n)–i.e., one of the form

v± ⊗ v̄± ⊗ . . . v̄± ⊗ v± ∈ V ⊗ V ∗ ⊗ . . .⊗ V ∗ ⊗ V
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(in the odd n case)–as a labeling of the corresponding circles of the (unique) resolution by
+’s and −’s, this amounts to verifying that the transposition ti = (i i+ 1) ∈ Sn exchanges
the markings on the ith and (i + 1)st strands and multiplies the resulting vector by −1.
This follows by appealing to Proposition 9. In particular, the cobordism map associated to
ti is id + ui, where ui is the Temperley-Lieb map described by the cobordism in Figure 7.4
(using Conventions 1 and 2 to pin down signs). One quickly computes that the map ui is 0
on any standard basis vector whose ith and (i + 1)st labels agree. If the ith and (i + 1)st
labels disagree, one computes

ui(. . .⊗ (v± ⊗ v̄∓)⊗ . . .) = (. . .⊗ (−v± ⊗ v̄∓ − v∓ ⊗ v̄±)⊗ . . .).
We conclude that the action of ti = 1 + ui agrees with the Sn action in the Schur-Weyl
representation, as desired. �

9.2. Positive stabilizations of the nontrivial annular unknot. Let

β̂n := the n-fold positive stabilization of the nontrivial unknot

= the annular closure of the braid βn := σ1σ2 . . . σn ∈ Bn+1,

V(m) := the (m+ 1)-dimensional irreducible representation of sl2.

Proposition 14. For all n ≥ 0, we have

SKhi(β̂n) ∼=


V(n+1){n} if i = 0,

V(n−1){n+ 2} if i = 1,

0 else,

where {m} denotes the grading-shift functor which raises the j′ := (j − k)-degree by m ∈ Z
and preserves the k-degree. As module over sl2(∧), SKh(β̂n) is indecomposable, with module
structure determined by the sl2 decomposition above together with the fact that the generator
v−2 of sl2(∧) takes a highest weight vector in V(n+1) to a highest weight vector in V(n−1).

Proof. The proof goes by induction on n. For n = 0, we have

SKhi(β̂0) = SKhi(nontrivial annular unknot) =

{
V(1){0} if i = 0,

0 else,

and hence the statement of the proposition is satisfied because V(−1) = 0. For n = 1, the

sutured annular Bar-Natan complex of β̂n is isomorphic to

0 −→
V(2){1}
⊕

V(0){1}

δ0−→
V(0){3}
⊕

V(0){1}
−→ 0

where

δ0 =

[
0 0
0 1

]
,

and so the proposition holds in this case as well.
To prove the proposition for n > 1, we use that the sutured annular Khovanov complex

of β̂n – denoted C(β̂n) – can be written as a mapping cone

C(β̂n) ∼= Cone
(
C(β̂n;0){1} f−−→ C(β̂n;1){2}

)
, 7

7The diagram β̂n;0 does not inherit a consistent orientation from β̂n. However, it turns out that because

of the particular form of β̂n, one can choose an orientation for β̂n;0 which almost agrees with the orientation
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where β̂n;0 (resp., β̂n;1) denotes the annular link diagram obtained from β̂n = ̂σ1 . . . σn by
replacing the unique crossing in σn by its 0-resolution (resp., 1-resolution), and f is the chain
map induced by a saddle cobordism between the 0- and the 1-resolution of this crossing.
It follows from the properties of the mapping cone that there is a short exact sequence of
chain complexes

0 −→ C∗−1(β̂n;1){2} −→ C∗(β̂n) −→ C∗(β̂n;0){1} −→ 0,

which induces a long exact sequence in homology:

. . . −→ SKhi−1(β̂n;1){2} −→ SKhi(β̂n) −→ SKhi(β̂n;0){1} −→ SKhi(β̂n;1){2} −→ . . . .

Looking at β̂n;0 and β̂n;1, one further sees that these diagrams represent the same annular

links as the diagrams ̂βn−1 × 1 and β̂n−2, respectively, and hence one can write the above
long exact sequence as

. . . −→ SKhi−1(β̂n−2){2} −→ SKhi(β̂n) −→ SKhi(β̂n−1)⊗ V(1){1} −→ . . . ,

where we have used that SKhi( ̂βn−1 × 1) = SKhi(β̂n−1)⊗ V(1).
8

We now use induction on n and the fact that V(m)⊗ V(1)
∼= V(m+1)⊕ V(m−1) to write the

nontrivial part of the above long exact sequence as

0 // SKh0(β̂n) // V(n+1){n} ⊕ V(n−1){n}

c0

rr
V(n−1){n} // SKh1(β̂n) // V(n−1){n+ 2} ⊕ V(n−3){n+ 2}

c1

rr
V(n−3){n+ 2} // SKh2(β̂n) // 0,

where c0 and c1 are connecting homomorphisms.

Lemma 13. c0 and c1 are nonzero.

Proof. Let gn−1 ∈ C0(β̂n−1){1} denote the elment obtained by labeling all circles in the

all-0-resolution of β̂n−1 by v−. Moreover, let Rn−1(`) denote the resolution of β̂n−1 obtained

by choosing the 1-resolution at the `th crossing of β̂n−1 and the 0-resolution at all other

crossings. Further, let g′n−1(`) ∈ C1(β̂n−1){1} be the element given by labeling the trivial
circle in Rn−1(`) by w+ and each nontrivial circle in Rn−1(`) by v−. Define

g′n−1 :=

n−1⊕
`=1

g′n−1(`) ∈ C1(β̂n−1){1}.

of β̂n, in the sense that it differs from the latter orientation only along a crossingless arc. The grading shifts

in the mapping cone description of C(β̂n) arise because, in the construction of Khovanov homology, the

j-degree is shifted by r + n+ − 2n−, where r denotes the number of 1-resolutions, and n+/n− denotes the
number of positive/negative crossings.

8This equation certainly holds as an equation between graded vector spaces. Since the sl2-module
structure is determined up to isomorphism by the k-grading, the equation also holds as an equation between

sl2-modules.
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We now leave it to the reader to verify that

c0([gn−1 ⊗ v+]) = [gn−2] and c1([g′n−1 ⊗ v+]) = [g′n−2].

Using the same sign conventions as in Bar-Natan’s first paper on Khovanov homology,
one can further see that the elements gn−1, g

′
n−1, gn−2, g

′
n−2 are cycles, and that none of

them is a boundary. It follows that c0 and c1 are nonzero. �

The inductive step in the proof of Proposition 14 now follows from the above long exact
sequence and from Lemma 13, coupled with the facts that (a) an sl2-module map between
two non-isomorphic irreducible sl2-modules is necessarily zero, and (b) an sl2-module map
between two isomorphic irreducible sl2-modules is either zero or an isomorphism.

The claim about the action of sl2(∧) is now a straightforward computation which we
leave as an exercise.

�

9.3. Annular (2,−n)-torus links for n ≥ 0. Let

T2,−n := the annular (2,−n)-torus link

= the annular closure of the braid σ−n1 ∈ B2.

In the case where n is even, we assume that both components of T2,−n are oriented
parallel to each other, in direction of the braid σ−n1 .

Proposition 15. For all n ≥ 1, we have

SKhi(T2,−n) ∼=



V(2){−n} if i = 0,

V(0){2i− n} if −n ≤ i ≤ −1 and i odd,

V(0){2i+ 2− n} if −n+ 1 ≤ i ≤ −2 and i even,

V(0){−3n+ 2} ⊕ V(0){−3n} if i = −n and n even,

0 else.

The sl2(∧) module structure on SKh(T2,−n) is completely determined by the fact that the
generator v2 of sl2(∧) takes a highest weight vector of the summand V(0){−n−2} to a highest
weight vector of V(2){−n} and annihilates all other V(0) summands.. Thus SKh(T2,−n) is
an indecomposable sl2(∧) module if and only if n = 1.

Proof. The proof goes by induction on n and is similar to the proof of Proposition 14. For
n = 1, the complex C(T2,−n) is isomorphic to

0 −→
V(0){−1}
⊕

V(0){−3}

δ−1−−→
V(2){−1}
⊕

V(0){−1}
−→ 0

where

δ0 =

[
0 0
1 0

]
,

and hence the proposition is satisfied in this case.
To prove the proposition for n > 1, we write C(T2,−n) as a mapping cone

C(T2,−n) ∼= Cone
(
C(T2,−n;0){−3n+ 1}[−n]

g−−→ C(T2,−n;1){−1}[−1]
)
,

where [m] denotes a shift of the homological grading by m ∈ Z, and T2,−n;0 (resp., T2,−n;1)

denotes the diagram obtained from T2,−n = σ̂−n1 by replacing the crossing in the last σ−1
1
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in σ−n1 by its 0-resolution (resp., its 1-resolution).9 As in the proof of Proposition 14, we
obtain a long exact sequence

. . . −→ SKhi(T2,−n;1){−1} −→ SKhi(T2,−n) −→ SKhi+n(T2,−n;0){−3n+ 1} −→ . . . ,

and by observing that T2,−n;0 represents a trivial annular unknot, and T2,−n;1 represents
T2,−(n−1), we can write this long exact sequence as

. . .→ SKhi(T2,−(n−1)){−1} → SKhi(T2,−n)→ SKhi+n(trivial unknot){−3n+ 1} ci+n→ . . . ,

where
ci+n : SKhi+n(trivial unknot){−3n+ 1} −→ SKhi+1(T2,−(n−1)){−1}

is the connecting homomorphism.

Lemma 14. ci+n is zero unless n is odd and i+ n = 0. Moreover, if n is odd, then

c0 : SKh0(trivial unknot){−3n+ 1} −→ SKh−n+1(T2,−(n−1)){−1}
is conjugate to the map

V(0){−3n+ 2}
⊕

V(0){−3n}

c′0−→
V(0){−3n+ 4}

⊕
V(0){−3n+ 2}

given by

c′0 =

[
0 0
1 0

]
,

where we have used that the graded sl2-module SKh−n+1(T2,−(n−1)){−1} is isomorphic to
V(0){−3n+ 4} ⊕ V(0){−3n+ 2} by induction.

To prove Lemma 14, we need the following claim:

Claim 1. For n > 1, the isomorphism

φ : SKh(trivial unknot) −→ SKh(T2,−n;0)

induced by a sequence of n− 1 consecutive Reidemeister I moves is given by

φ(w+) =

n∑
`=1

(−1)`+1w
⊗(`−1)
− ⊗ w+ ⊗ w⊗(n−`)

− ,

φ(w−) = w⊗n− ,

where the terms on the right-hand side live in the vector space associated to the all-0-
resolution of T2,−n;0. (Here we assume the order of the tensor factors corresponds to the
order in which the circles of the all-0-resolution appear as one travels around the annulus).

The proof of the claim is an easy computation and therefore omitted.

Proof of Lemma 14. Since SKh(trivial unknot) is supported in homological degree 0, it is
clear that ci+n is zero unless i+ n = 0. By observing that c0 is induced by the chain map

g : C(T2,−n;0){−3n+ 1}[−n] −→ C(T2,−n;1){−1}[−1]

that appears in the mapping cone description of C(T2,−n), it is further easy to see that c0
can be written as

c0 = (M ◦ φ)∗,

9The diagram T2,−n;0 does not inherit a consistent orientation from T2,−n. One therefore has to choose

an orientation for T2,−n;0 “by hand”.
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where φ is as in the claim, and M is the map

C0(T2,−n;0){−3n+ 1} = W⊗n{−2n} M−−−→W⊗(n−1){−2n+ 1} = C−n+1(T2,−(n−1)){−1}

given by M(w1 ⊗ w2 ⊗ . . . wn−1 ⊗ wn) := m(w1 ⊗ wn)⊗ w2 ⊗ . . .⊗ wn−1, with m denoting
Khovanov’s multiplication map. We thus obtain c0([w−]) = [M(φ(w−))] = 0 and

c0([w+]) = [M(φ(w+))] =

{
0 if n is even,

[2w
⊗(n−1)
− ] if n is odd.

Now observe that 2w
⊗(n−1)
− ∈ C−n+1(T2,−(n−1)){−1} cannot be a boundary because

it sits in lowest possible homological degree. Hence c0([w+]) is a nonzero whenever n is
odd, and by looking at the gradings, one can see that c0([w+]) lives in V(0){−3n + 2} ⊂
SKh−n+1(T2,−(n−1)){−1}. It is now evident that c0 has the desired form. �

The inductive step in the proof of Proposition 15 now follows from Lemma 14 and from
the long exact sequence stated before Lemma 14.

The action of v−2 is now an easy computation which is left to the reader. �

Remark 12. Comparing Proposition 15 to the computations in Section 6 of [21], we see
that the ranks of SKh(T2,−n) and Kh(T2,−n) agree in all homological degrees except degrees
0 and 1.

10. Appendix

In the following, let z := {(0, 0, z) z ∈ R} ⊂ R3 denote the z-axis in R3, and I = [0, 1].

Definition 7. An (oriented) annular link cobordism Σ between (oriented) links L0 ⊂ R3\z =
(R3 \ z)× {0} and L1 ⊂ (R3 \ z) = (R3 \ z)× {1} is a smooth, compact, (oriented) surface
imbedded in (R3 \ z)× I satisfying

• ∂Σ = L0 q L1 and
• there exists some ε > 0 such that the intersection of Σ with(R3\z)×([0, ε]q [1− ε, ε])

can be identified with the product imbedding (L0 × [0, ε])q (L1 × [1− ε, 1]).

An annular link cobordism Σ is said to be generic if the projection map p : (R3\z)×I → I
restricted to Σ is Morse with distinct critical values.

Definition 8. An annular movie of a link cobordism is a smooth, one-parameter family of
curves, Dt ⊂ (R2 \ 0), t ∈ [0, 1], called annular stills, satisfying:

• for all but finitely many t ∈ [0, 1], Dt is a link diagram (an immersed curve equipped
with over/undercrossing information at all double points),

• at each of the finitely many critical levels t1, . . . , tk, the diagram undergoes a single
elementary string interaction (i.e., a birth, saddle, death, or Reidemeister move)
localized to a disk in R2 \ 0.

Remark 13. Since annular cobordisms are assumed compact, we can (and shall) consider
all annular cobordisms to be imbedded in (A×I)×I ⊂ (R3 \z)×I. Accordingly, an annular
movie may be viewed upon A ⊂ R2 \ 0.

Lemma 15. Any annular link cobordism Σ can be represented by an annular movie.

Proof. Let Σ be an annular link cobordism. Composing with the inclusion (R3 \ z) → R3

produces a traditional link cobordism (cf. [19, Defn. 5]) which can be perturbed in a
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small open neighborhood (hence, in the complement of z × I) to a generic (annular) link
cobordism. The image of Σ under the projection map,

π × id : R3
(x,y,z) × I → R2

(x,y) × I,

is then an annular broken surface diagram, an immersed surface in (R2 \0)× I whose points
of self-intersection are either generic double points, triple points, or branch points (cf. [9,
Sec. 1.4]). After a possible further perturbation of Σ (which can, again, be performed in
the complement of z× I), the intersections of the annular broken surface diagram with the
level sets (R2 \ 0)× {t} yield an annular movie of the link cobordism, as desired. �

Lemma 16. Let Σ be an annular link cobordism represented by two different annular movies
MΣ and M′

Σ. Then MΣ and M′
Σ are related by a finite sequence of Carter-Saito movie

moves ([10, Fig. 23-37]), each of which is localized to a disk in R2 \ 0.

Proof. As before, Σ ⊆ (R3 \ z)× I ⊆ R3 × I can be viewed as a traditional link cobordism,
and the isotopy joining the representatives of Σ giving rise to MΣ and M′

Σ, respectively,
can be viewed as an isotopy in R3 × I. Carter-Saito’s movie move theorem [10, Thm. 7.1]
then implies that there exists some finite sequence of movie moves, each localized to a disk
in R2, relating M and M’.

We claim that each movie move can, in fact, be localized to a disk in R2 \ 0. But this
follows because if any of the movie moves is localized to a disk which cannot be made disjoint
from 0, then in the course of the movie move, there exists some still whose curve intersects 0.
The corresponding isotopy it represents must therefore intersect z× I, a contradiction. �
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