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Abstract. It follows implicitly from recent work in Heegaard Floer theory that lens

spaces are homology cobordant exactly when they are oriented homeomorphic. We pro-

vide a new combinatorial proof using the Heegaard Floer d-invariants, which themselves
may be defined combinatorially for lens spaces.

Introduction

An integer homology cobordism between two closed, oriented 3-manifolds Y1 and Y2 is a
compact, oriented 4-manifold W whose boundary is ∂W = Y1 ∪−Y2 such that the inclusion
maps induce isomorphisms Hi(Y1; Z) ∼= Hi(W ; Z) ∼= Hi(Y2; Z) for all homology groups;
homology cobordism gives an equivalence relation. There are also corresponding definitions
of rational homology cobordisms and spin-c rational homology cobordisms.

The homology cobordism classification of the lens spaces was only recently completed.
In 1983, Gilmer and Livingston demonstrated that the lens spaces L(p, q) for prime p are
homology cobordant iff they are diffeomorphic [GL83]. Fintushel and Stern extended this
result in 1988 for odd p [FS87]. Nicolaescu proved in 2001 that the Ozsváth-Szabó d-
invariant recovers Reidemeister-Franz torsion [Nic04, Section 5], which, in turn, recovers
homeomorphism type for lens spaces by results of Brody and Reidemeister [Bro60, Rei35]
(technically, Nicolaescu showed the Ozsváth-Szabó theta divisor recovers the sum of the
Casson-Walker invariant and Reidemeister-Franz torsion, but the Casson-Walker invariant
of a lens space is the sum of its d-invariants, by a result of Rasmussen [Ras04, Lemma 2.2],
and the theta divisor is the precursor of the d-invariant [OS]). In 2011, Greene showed that 2-
bridge links are mutants iff their branched double covers (recall, all lens spaces are branched

double covers of 2-bridge links) are homeomorphic iff the covers’ ĤF are the same [Gre13],

but ĤF recovers Reidemeister-Franz torsion by Rustamov [Rus, Theorem 3.4].
There are many known cobordism invariants, including some from Heegaard Floer homol-

ogy. Ozsváth and Szabó associated the d-invariants to a manifold and spin-c structure which
is invariant under spin-c rational homology cobordism, and the d-invariant function on the
torsor of spin-c structures is likewise invariant under rational or integral homology cobor-
dism [OS03, Theorem 1.2]. We provide a combinatorial proof that two lens spaces L(p, q1)
and L(p, q2) share the same d-invariant function precisely when they are oriented homeo-
morphic. Since the d-invariants are defined combinatorially for lens spaces, this produces a
proof of the homology cobordism classification of lens spaces which is entirely combinatorial
(modulo the proof that the d-invariants are spin-c homology cobordism invariants; in fact,
there is a proof of this invariance for lens spaces which is combinatorial except for its use of
Donaldson’s Theorem [Gre13]).
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Theorem 1. Two lens spaces are cobordant by an integral homology cobordism exactly when
they are oriented homeomorphic.

We begin with a review of facts about d-invariants and spin-c structures and their be-
havior under homology cobordism. We also define a type of relative d-invariant f(s, n)
which carries all the information we need about the d-invariants. Next, we show that, if
Spinc(L(p, q1)) and d(L(p, q1), ·) are isomorphic to Spinc(L(p, q2)) and d(L(p, q2), ·) in the
category of torsors and functions, then q1 = q2 or q1q2 ≡ 1 (mod p). Finally, we derive a
more explicit description of the d-invariants modulo Z in the special case where p is prime.

Notation

Throughout this paper, let [a]p denote a representative of the class in the interval [0, p).
Let a ≡p b mean a and b are equivalent modulo p. Let a′ denote the inverse of a (if it
exists), so aa′ ≡p 1.
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d-invariants and spin-c structures

Heegaard Floer homology assigns several flavors of invariants (including HF∞ and HF+)
to a closed, connected, oriented 3-manifold and a choice of spin-c structure using a Heegaard
decomposition of the manifold [OS04b, OS04a]. The generators come with a relative Z-
grading. A spin-c cobordism (W, s) from (Y1, s|Y1) to (Y2, s|Y2) produces a map

F+
W,s : CF+(Y1, s|Y1

) −→ CF+(−Y2, s|−Y2
)

which induces a relative grading between generators for the two manifolds:

(1) gr(F+
W,s(x))− gr(x) =

c1(s)2 − 2χ(W )− 3sign(W )

4
.

For an appropriate choice of spin-c manifold, including a rational homology sphere with
its unique spin-c structure, this grading shift allows a lift of the relative Z-grading to an
absolute Q-grading by fixing a canonical grading for S3 with its unique spin-c structure.

Derived from this absolute grading is the correction term or d-invariant d(Y, σ), the min-
imal grading of any non-torsion element in HF+(Y, σ) inherited from HF∞(Y, σ) [OS03]. It
is invariant under spin-c rational homology cobordism (if W is a rational homology cobor-
dism, then the right side of Equation (1) is 0 for both W and −W ). The d-invariants,
as a function on a torsor over H2(Y ) ∼= H1(Y ), is also invariant under integral homology
cobordism in the following fashion:

Proposition 2. If Y1 and Y2 are integrally homology cobordant, then Spinc(Y1) and d(Y1, ·)
are isomorphic to Spinc(Y2) and d(Y2, ·) in the category of torsors and functions.

Proof. Let W be the 4-manifold cobordism with ∂W = Y1 ∪ −Y2.
Spinc(Yi) is a torsor over H2(Yi) ∼= H1(Yi), and Spinc(W ) s a torsor over H2(W ) ∼=

H2(W,∂W ). The long exact sequence for the pair (W,∂W ) splits:

0 −−−−→ H2(W,∂W )
r∗1−r

∗
2−−−−→ H1(Y1)⊕H1(−Y2) −−−−→ H1(W ) −−−−→ 0.
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where ri is the restriction map to L(p, qi). This short sequence induces isomorphisms

H1(Y1)
r∗1←−−−− H2(W,∂W )

r∗2−−−−→ H1(Y2)

which in turn induce the required torsor isomorphism

Spinc(Y1)
r2r
−1
1−−−−→ Spinc(Y2).

There is a Z/2Z conjugation action t 7→ t on the spin-c structures which fixes the spin
structures. The restrictions maps and so also this isomorphism respect it.

Because it is invariant under spin-c homology cobordism, d(Y1, r1(t)) = d(Y2, r2(t)), and
the functions d(Yi, ·) are isomorphic. �

The lens space −L(p, q) has a pointed Heegaard diagram (T 2, α, β, z) with a single α curve
and β curve and exactly p intersection points α ∩ β, one in each of the p spin-c structures.
For example, the Heegaard decomposition of −L(5, 2) looks like:

0 1 2 3 4

z

γ

α

β

We have chosen the orientation on L(p, q) so that the manifold is−p/q surgery on the unknot.
Choose an identification of Spinc(L(p, q)) by labelling the intersection points 0, 1, . . . , p− 1
from left to right across the bottom of the diagram, beginning with the 0 for the bottom
right corner of the domain containing the basepoint z [OS03, Proposition 4.8]. To see the
difference of two spin-c structures i− j ∈ H1(L(p, q)) under this identification, observe the
curve γ, which is a generator of H1(L(p, q)) and connects i to i + q along the α curve and
i+ q to i along the β curve, so we say (i+ q)− i = [γ]. Any other i− j gives a multiple of
[γ].

There is a combinatorial description of the d-invariants of a lens space based on the
grading shift in Equation (1) derived in [OS03, Proposition 4.8]. Assuming 0 < q < p,

d(L(p, q), i) =
1

4
− (2[i]p + 1− p− q)2

4pq
− d(L(q, p), i).

Derived from this recursive formula is a more direct formula for how the d-invariants change
under the γ-action [LL08, Corollary 5.2]:

(2) d(L(p, q), i+ q)− d(L(p, q), i) =
p− 1− 2[i]p

p
.

The spin structures are exactly the integers among the following:

(3)
q − 1

2
and

p+ q − 1

2
.

This result may be deduced from Equation (2): The conjugation action which fixes a spin
structure s must identify s + n and s − n, and d(L(p, q), i + q) = d(L(p, q), i − q) implies
p−1−2i

p = −p−1−2(i−q)
p , or 2i ≡p q − 1. For alternative explanations, Cf [Ue09, p. 134] or
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[CH15, Lemma 6.1]. Note that both numbers in (3) are axes of symmetry, and both are
integers when p is even, but only one is an integer (and so a spin structure) when p is odd.

In the case of two homology cobordant lens spaces L(p, qi), Proposition 2 also implies:

d(L(p, q1), s1 + a) = d(L(p, q2), r2r
−1
1 (s1) + (r2r

−1
1 )∗(a)) = d(s2 + ua).

for any a ∈ H1(L(p, q1)), where s1 and s2 are chosen spin structures which are restrictions of
a common spin structure onW . The last equality follows because (r2r

−1
1 )∗ is an isomorphism

of Z/pZ, which means it is multiplication by some unit u ∈ Z/pZ.

Relative d-invariants

Let p and q be coprime with p > q > 0. Choose a spin structure s as in (3) (if p is
odd, this choice is forced). We renormalize the d-invariants of L(p, q) by defining a function
f(s, ·) : Z/pZ→ Z using this choice of spin structure:

f(s, n) := pd(L(p, q), s+ nq)− pd(L(p, q), s).

Lemma 3. The function f obeys

f(s, 0) = 0

f(s, n+ 1) = f(s, n) + p− 1− 2 [s+ nq]p

f(s, n) ≡p −n2q

If L(p, q1) and L(p, q2) are homology cobordant by W , and if f1 and f2 are the corresponding
functions for some compatible choice of spin structure s1 and s2 which restrict the same spin
structure on W ,

f2(s2, n) = f1(s1, nu)

q2 ≡p u
2q1

for some unit u ∈ Z/pZ.

A cobordism between two lens spaces tells us about the torsor structure defined above.

Proof. The first two equalities follow from Equation (2) and the definitions of f and s.
The third equality holds because f(s, n + 1) ≡p f(s, n) − (2n + 1)q and f(s, 0) ≡p 0. The
fourth follows from Proposition 2, assuming that the spin structures were chosen so that
r2r
−1
1 (s1) = s2, and the last equality follows from the third and fourth. �

Proof of Theorem 1

We will now prove the main theorem.

Proof of Theorem 1. By Lemma 3, there is a unit u such that

q1 = q and q2 ≡p u
2q.

There is also some choice of spin structures s1 and s2 which are restrictions of the same spin
structure on W . Define g : Z/pZ −→ Z such that

g(m) := f1(s1,mq
′) = f2(s2,mu

′q′),

which is well-defined by the definitions of fi(si,m) and Lemma 3.
Apply the recursive equations for fi(si, n) from Lemma 3 to f1(s1,mq

′+1) and f2(s2,mu
′q′+

1) to see that g satisfies the relations:

g(m+ q) = g(m) + p− 1− 2 [s1 +m]p
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and
g(m+ uq) = g(m) + p− 1− 2 [s2 +mu]p .

Since the above relations must hold for all m, we can compute g(m+uq+q) in two ways,
as g((m+ uq) + u) or as g((m+ u) + uq). Since the results must be the same, we get

(4) [s1 +m]p + [s2 + (m+ q)u]p = [s2 +mu]p + [s1 +m+ uq]p .

Now recall that

[X + Y ]p =

{
[X]p + [Y ]p if [X]p < p− [Y ]p,

[X]p + [Y ]p − p if [X]p ≥ p− [Y ]p.

Equation (4) is therefore equivalent to the condition that

(5) [s1 +m]p < p− [uq]p ⇐⇒ [s2 +mu]p < p− [uq]p

for all m ∈ Z/pZ.
By Lemma 5 below, Condition (5) can only be satisfied for all m ∈ Z/pZ if either u ≡p ±1

or uq ≡p ±1. That is, either q2 = q1 or q1q2 ≡p 1. �

Note that we did not use any information in the above proof about the explicit forms
the si take, merely the fact that there exist s1 and s2 which are restrictions of some spin
structure on W ; in particular, the parity of p is irrelevant.

We now address two technical lemmata required for the proof above.

Lemma 4. Let
H : {0, 1, · · · , p− 1} −→ {0, 1, · · · , p− 1}

be a function such that H(i) ≡p H(0) + in. If

H(i) < C ⇐⇒ i < C

where 2 ≤ C ≤ p− 2, then

H(i) = i or H(i) = C − 1− i.

A few experiments will quickly convince the reader that this lemma should be true. For
the sake of completeness, we prove:

Proof. Choose −p/2 ≤ n ≤ p/2. Assume, for the moment, that C ≤ p/2.
If n = 1, then H(0) = 0 and H(i) = i.
If n = −1, then H(0) = C − 1 and H(i) = C − i− 1.
For any other n, there will eventually be an i < C with H(i) ≥ C. For example, for

n ≥ 2, take

i0 =

⌊
C −H(0)

n

⌋
+ 1

Note that 0 < i0 < C since C ≥ 2, and

0 < H(0) + ni0 ≤ H(0) + n

(
C −H(0)

n
+ 1

)
= C + n ≤ p

so we may remove the ≡p in the definition of H(i0):

H(i0) = H(0) + ni0 ≥ H(0) + n

(
C −H(0)

n

)
= C,

as desired.
Similarly, for n ≤ −2, take

i0 =

⌊
H(0)

|n|

⌋
+ 1.
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Now −p < H(0) + ni0 < 0, so

H(i0) = H(0) + ni0 + p ≥ H(0)− |n|
(
H(0)

|n|
+ 1

)
+ p ≥ p− |n| ≥ p/2 ≥ C

It is easy to adjust the above proof to accommodate C ≥ p/2. The key is that some (at
least two and at most p − 2) adjacent values of i map to (the same number of) adjacent
values of H(i). The following are equivalent:

H(i) < C ⇐⇒ i < C

0 ≤ H(i) ≤ C − 1 ⇐⇒ 0 ≤ i ≤ C − 1

p− C ≤ H(i) + p− C ≤ p− 1 ⇐⇒ p− C ≤ i+ p− C ≤ p− 1

p− C ≤ H(i− p+ C) + p− C ≤ p− 1 ⇐⇒ p− C ≤ i ≤ p− 1

H(i+ C)− C < p− C ⇐⇒ i < p− C

and Ĥ(i) = H(i+ C)− C also obeys the rule Ĥ(i) ≡p Ĥ(0) + in. �

Lemma 5. Let

f(m) = [x+my]p

F (m) = [X +mY ]p.

with y and Y units modulo p. If

f(m) < C ⇐⇒ F (m) < C

for some 2 ≤ C ≤ p− 2, then

Y = ±y.

Proof. Rescale m by precomposing f and F with

m(i) = (i− x)y′.

Then

h(i) := f(m(i)) = [i]p

and

H(i) := F (m(i)) = [(X − xy′Y ) + i(y′Y )]p.

The lemma statement is equivalent to

h(i) < C ⇐⇒ H(i) < C,

which is equivalent to

H(i) < C ⇐⇒ i < C.

Note that H(i) ≡p H(0) + in, and apply Lemma 4.
If H(i) = i, then y′Y = 1, or Y = y, and X − xy′Y = 0, or X = x.
If H(i) = C − 1− i, then H(0) = C − 1 ≡p X − xy′Y and H(C − 1) = 0 ≡p X − xy′Y +

(C − 1)y′Y ≡p C − 1 + (C − 1)y′Y , so Y ≡p −y and X ≡p −x+ C − 1. �
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If p is prime

In the special case where p is a prime, we have a more precise description of the d-
invariants modulo Z. Consider the reduction of f modulo p, f(s, ·) : Z/pZ → Z/pZ. We
denote by

S(L(p, q)) ⊆ Z/pZ

the image of f .

Theorem 6. Let p be prime number and q coprime to p.

(a) If q is a quadratic residue modulo p, then

S(L(p, q)) = {a ∈ Z/pZ | −a is a square in Z/pZ}.

(b) If q is a quadratic non-residue modulo p, then

S(L(p, q)) = {a ∈ Z/pZ | −a is not a square in Z/pZ} ∪ {0}.

In the residue case, a more explicit description of the d-invariants is possible:

Corollary 7. Let p be an odd prime number and q a residue coprime to p.

(a) There is only one n such that f(s, n) = 0, namely, n = 0.
(b) For every a ∈ S(L(p, q)) \ {0}, there are exactly two n such that f(s, n) = a.
(c) S(L(p, q)) contains exactly (p+ 1)/2 elements.

Proof of Theorem 6. Since f(s, n) ≡p −n2q,

S(L(p, q)) = {a ∈ Z/pZ | a satisfies a ≡p −n2q for some n}.

If a = 0, then n = 0.

Let
(

m
p

)
denote the Legendre symbol of m and p, defined by

(
m

p

)
:=


1 if m is a quadratic residue modulo p,

−1 if m is a quadratic non-residue modulo p,

0 if m is zero modulo p.

Assume a 6= 0. Then the condition a ≡p −n2q can be written as −aq′ ≡p n
2, or(

−aq′

p

)
= 1.

Since the Legendre symbol is multiplicative in the first argument, we can write the condition
as (

−a
p

)(
q′

p

)
= 1,

and, multiplying both sides by
(

q
p

)
, we get(
−a
p

)
=

(
q

p

)
,

where we have used that
(

q′

p

)(
q
p

)
=
(

qq′

p

)
=
(

1
p

)
= 1. We can thus write S(L(p, q)) as

S(L(p, q)) =
{
a ∈ Z/pZ

∣∣∣ a = 0 or
(
−a
p

)
=
(

q
p

)}
.

�
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Proof of Corollary 7. If p is prime, (Z/pZ)[x] is a unique factorization domain. If p 6= 2,
this means every equation n2 ≡p −aq′ with a 6= 0 has exactly two solutions. Part (c) follows
because the total number of d-invariants, counted with multiplicities, is equal to p. �

Note that S(L(2, 1)) = Z/2Z, so (b) and (c) are false for p = 2.
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