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Abstract. We define an annular version of odd Khovanov homology and prove that

it carries an action of the Lie superalgebra gl(1|1) which is preserved under annular

Reidemeister moves.

1. Introduction

In [13], Khovanov defined a link invariant categorifying the Jones polynomial. That is,
he constructed a bigraded homology theory of links whose graded Euler characteristic is
the Jones polynomial. Recalling [29, 24] that the Jones polynomial has an interpretation
involving representations of the quantum group Uq(sl(2)), it is perhaps not surprising that
an annular version of Khovanov homology defined in [1] and further studied in [25] (see also
[10]) carries an action of the Lie algebra sl(2) [9, 22]. Moreover, although annular Khovanov
homology is not a link invariant (it is well-defined only up to isotopy in the complement of
a standardly-imbedded unknot in S3), the algebraic features of the Khovanov complex that
have yielded the most geometric/topological information (e.g. [20, 23]) have coincided with
key sl(2)–representation-theoretic features of the annular Khovanov complex (cf. [12, Prop.
1]).

In [15], Ozsváth-Szabó-Rasmussen defined an odd version of Khovanov homology. When
taken with Z2 coefficients, their construction agrees with Khovanov’s original construction.
Hence, odd Khovanov homology can be viewed as an alternative integral lift of Khovanov
homology.

Our aim in the present work is to define a natural annular version of odd Khovanov
homology (Subsection 3.1) and show that it carries a well-defined action, not of the Lie
algebra sl(2), but of the Lie superalgebra gl(1|1) (Theorems 1 and 2). We will define this
gl(1|1) action explicitly on chain level, using two different descriptions of the odd annular
Khovanov complex (Subsections 3.2 and 3.3).

In a follow-up paper with Casey Necheles, the second author extends results of Russell [26]
to the odd setting by relating an annular version of Putyra’s chronological cobordism ca-
tegory [21] to a dotted version of the odd Temperley-Lieb category (defined as in [7]) at
δ = 0. After setting dots equal to zero, the latter category becomes equivalent to a (non-
full) subcategory of the category of gl(1|1) representations. As a consequence, one obtains
a natural interpretation of the gl(1|1) action on odd annular Khovanov homology.

In a different direction, noting that:

• the bordered Heegaard-Floer tangle invariant defined by Petkova-Vértesi [18] carries
a categorical action of Uq(gl(1|1)) [8],

• on a decategorified level, the bordered theory for knot Floer homology defined by
Ozsváth-Szabó [17] carries an action of Uq(gl(1|1)) [14],
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• conjecturally, there is an Ozsváth-Szabó spectral sequence relating odd Khovanov
homology of (the mirror of) a link to the Heegaard-Floer homology of the manifold
obtained as the connected sum of the double-branched cover of L with S1 × S2 (cf.
[28, 4]),

it is natural to ask the following:

Question 1. Let L ⊆ Y be a link in a 3–manifold satisfying either:

(1) Y = S3 and L = L0 ∪ L′ where L0 is an unknot and L′ is non-empty, or
(2) Y is the double-branched cover of a knot K ⊆ S3, and L = p−1(U) is the preimage

of an unknot U in S3 −K.

Does ĤFK(Y,L), the knot Floer homology of L in Y , carry an action of gl(1|1)? In the latter
case, how does this gl(1|1) action relate to the gl(1|1) action on AKhodd(K ⊆ S3 −N(U))?

For a link L = L0 ∪ L′ which is realized as the closure, L′, of a tangle T , linked by
the tangle axis, L0, Petkova-Vértesi [19] showed that the knot Floer homology of L can be
identified with the Hochschild homology of the tangle Floer homology of T . In the case

where T is a tangle in R2 × I, the existence of a gl(1|1) action on ĤFK(L) could therefore
be established by showing that the categorical gl(1|1) action described in [8] induces an
action on Hochschild homology.

In this context, it is worth noting that the even version of annular Khovanov homology
has been identified (see [2] for a special case and [5] for the general case) with the Hochschild
homology of the Chen-Khovanov tangle invariant, which categorifies the Reshetikhin-Turaev
tangle invariant associated to the fundamental representation of Uq(sl(2)).

1.1. Acknowledgements. The authors would like to thank John Baldwin, Tony Licata,
Robert Lipshitz, and Ina Petkova for interesting discussions.

2. Preliminaries on gl(1|1) representations

In this section, we will review basic facts of the representation theory of the Lie superalge-
bra gl(1|1). We will assume throughout that we are working over C. By a vector superspace,
we will mean a vector space V endowed with a Z2-grading V = V0̄⊕V1̄. We will refer to this
grading as the supergrading on V , and we will use the notation |v| to denote the superdegree
of a homogeneous element v ∈ V .

For n ∈ Z, we will denote by 〈n〉 the shift functor which shifts the superdegree on a
vector superspace by the image n̄ of n under the quotient map Z → Z2. Thus if V is a
vector superspace, then V 〈n〉 is the vector superspace with (V 〈n〉)ī = Vī+n̄ for ī ∈ Z2.

2.1. Representations of Lie superalgebras. Recall that a Lie superalgebra is a vector
superspace g = g0̄⊕g1̄ endowed with a bilinear Lie superbracket [−,−]s : g×g→ g satisfying

(1) |[x, y]s| = |x|+ |y|,
(2) [x, y]s = −(−1)|x||y|[y, x]s,
(3) [x, [y, z]s]s = [[x, y]s, z]s + (−1)|x||y|[y, [x, z]s]s,

for all homogeneous x, y, z ∈ g.
If V is a vector superspace, then gl(V ) denotes the Lie superalgebra whose underlying

vector superspace is the space End(V ) of all linear endomorphisms of V , and whose Lie
superbracket is given by the supercommutator [x, y]s := x ◦ y − (−1)|x||y|y ◦ x for all homo-
geneous x, y ∈ End(V ). Here, it is understood that an endomorphism of V has superdegree
0̄ if it preserves the supergrading on V , and superdegree 1̄ if it reverses the supergrading on
V .
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A homomorphism between two Lie superalgebras g and g′ is a linear map from g to g′

which preserves both the supergrading and the Lie superbracket. A representation of a Lie
superalgebra g is a vector superspace V together with a homomorphism ρV : g→ gl(V ). As
with ordinary Lie algebras, the map ρV is sometimes called the action of g on V .

Let V and W be two representations of a Lie superalgebra g. Then V 〈n〉 is a represen-
tation of g with ρV 〈n〉 = ρV , and the dual space V ∗ = Hom(V,C) is a representation of g

with (V ∗)ī = Hom(Vī,C) for ī ∈ Z2 and

ρV ∗(x)(ϕ) = −(−1)|x||ϕ|(ρV (x))∗(ϕ)

for all homogeneous x ∈ g and ϕ ∈ V ∗. Moreover, the tensor product V ⊗W is a represen-
tation of g with |v ⊗ w| = |v|+ |w| and

ρV⊗W (x)(v ⊗ w) = (−1)|w||x|(ρV (x)(v))⊗ w + v ⊗ (ρW (x)(w))

for all homogeneous x ∈ g, v ∈ V , and w ∈W .

Remark 1. In the literature, the action of g on V ⊗W is more commonly defined by

ρV⊗W (x)(v ⊗ w) = (ρV (x)(v))⊗ w + (−1)|x||v|v ⊗ (ρW (x)(w))

for all homogeneous x ∈ g, v ∈ V , and w ∈ W . It is easy to check that our definition
yields an isomorphic representation, where the isomorphism is given by the endomorphism
of V ⊗W which sends a homogeneous element v ⊗ w to the element (−1)|v||w|v ⊗ w.

Remark 2. The representations V ⊗W and W ⊗V are isomorphic where the isomorphism
is given by the linear map τ : V ⊗W →W ⊗ V which sends a homogeneous element v ⊗ w
to the element (−1)|v||w|w ⊗ v. We will henceforth call this map the twist map.

Given two homogeneous linear maps f : V → V ′ and g : W → W ′ between vector super-
spaces, let f ⊗ g : V ⊗W → V ′ ⊗W ′ denote the homogeneous linear map defined by

(f ⊗ g)(v ⊗ w) := (−1)|g||v|f(v)⊗ g(w)

for all homogeneous v ∈ V and w ∈W . Using this definition, we have:

Lemma 1. If g is a Lie superalgebra and f : V → V ′ and g : W → W ′ are homogeneous
linear maps between g representations which intertwine the actions of g, then the tensor
product f ⊗ g : V ⊗W → V ′ ⊗W ′ defined as above also intertwines the actions of g.

Proof. Let x ∈ g, v ∈ V , and w ∈W be homogeneous. Then

ρV ′⊗W ′(x)
[
(f ⊗ g)(v ⊗ w)

]
= (−1)|g||v|ρV ′⊗W ′(x)

[
f(v)⊗ g(w)

]
= (−1)|g||v|

[
(−1)(|g|+|w|)|x|ρV ′(x)(f(v))⊗ g(w) + f(v)⊗ ρW ′(x)(g(w))

]
= (−1)|g||v|

[
(−1)(|g|+|w|)|x|f(ρV (x)(v))⊗ g(w) + f(v)⊗ g(ρW (x)(w))

]
= (−1)|g||v|+|g||x|+|w||x|f(ρV (x)(v))⊗ g(w) + (−1)|g||v|f(v)⊗ g(ρW (x)(w))

= (−1)|w||x|(−1)|g|(|x|+|v|)f(ρV (x)(v))⊗ g(w) + (−1)|g||v|f(v)⊗ g(ρW (x)(w))

= (−1)|w||x|(f ⊗ g)(ρV (x)(v)⊗ w) + (f ⊗ g)(v ⊗ ρW (x)(w))

= (f ⊗ g)
[
(−1)|w||x|ρV (x)(v)⊗ w + v ⊗ ρW (x)(w)

]
= (f ⊗ g)

[
ρV⊗W (x)(v ⊗ w)

]
.

Hence f ⊗ g intertwines the maps ρV⊗W (x) and ρV ′⊗W ′(x), which proves the lemma. �
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For a vector superspace V , let ΦV denote the linear involution ΦV : V → V defined by
ΦV (v) = (−1)|v| for every homogeneous element v ∈ V . The following lemma describes how
the grading shift functor 〈1〉 interacts with duals and tensor products of representations.

Lemma 2. Let V and W be two representations of a Lie superalgebra g. Then

(V 〈1〉)∗ ∼= V ∗〈1〉,

where the isomorphism is given by the map ΦV ∗ : V ∗ → V ∗, and

V 〈1〉 ⊗W ∼= (V ⊗W )〈1〉 ∼= V ⊗W 〈1〉,

where the first isomorphism is given by the identity map of V ⊗W and the second isomor-
phism is given by the map ΦV ⊗ idW .

Proof. Let x ∈ g and ϕ ∈ V ∗ be homogeneous. Then the definition of ΦV ∗ implies

(ΦV ∗ ◦ ρV ∗(x))(ϕ) = (−1)|x|+|ϕ|(ρV ∗(x))(ϕ) = (−1)|x|(ρV ∗(x) ◦ ΦV ∗)(ϕ),

where the first equation follows because ρV ∗(x)(ϕ) has superdegree |x| + |ϕ|. Because
ρV ∗ = ρV ∗〈1〉, the left-most term in the above sequence of equations can be identified with
(ΦV ∗ ◦ ρV ∗〈1〉(x))(ϕ), and because

(−1)|x|ρV ∗(x)(ϕ) = −(−1)|x|(−1)|x||ϕ|(ρV (x))∗(ϕ)

= −(−1)|x|(|ϕ|+1)(ρV 〈1〉(x))∗(ϕ)

= ρ(V 〈1〉)∗(x)(ϕ),

the right-most term can be identified with (ρ(V 〈1〉)∗(x) ◦ ΦV ∗)(ϕ). Thus we have

ΦV ∗ ◦ ρV ∗〈1〉(x) = ρ(V 〈1〉)∗(x) ◦ ΦV ∗ ,

and hence ΦV ∗ is an isomorphism between V ∗〈1〉 and (V 〈1〉)∗.
The claim that the identity map of V ⊗W is an isomorphism between V 〈1〉 ⊗W and

(V ⊗W )〈1〉 follows because ρV 〈1〉⊗W = ρV⊗W = ρ(V⊗W )〈1〉, by our definition of the tensor
product of two representations.

Finally, by Remark 2, we have a sequence of isomorphisms

V ⊗W 〈1〉 τ−→W 〈1〉 ⊗ V id−→ (W ⊗ V )〈1〉 τ−→ (V ⊗W )〈1〉.

This sequence takes a homogeneous element v ⊗ w ∈ V ⊗W to

(−1)|v|(|w|+1)(−1)|w||v|v ⊗ w = (−1)|v|v ⊗ w = (ΦV ⊗ idW )(v ⊗ w),

and hence ΦV ⊗ idW is an isomorphism between V ⊗W 〈1〉 and (V ⊗W )〈1〉. �

2.2. The Lie superalgebra gl(1|1) and some of its representations. Let C1|1 denote
the vector superspace

C
1|1 := Cv0 ⊕ Cv1

spanned by two homogeneous elements v0 and v1 of superdegrees 0̄ and 1̄, respectively. The
Lie superalgebra gl(1|1) is defined as the space of linear endomorphisms gl(1|1) = gl(C1|1) =
End(C1|1) with Lie superbracket given by the supercommutator, as described in the previous
subsection. Explicitly, gl(1|1) is spanned by the following elements

h1 =

(
1 0
0 0

)
, h2 =

(
0 0
0 1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
,
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where h1 and h2 have superdegree 0̄ and e and f have superdegree 1̄. The Lie superbracket
on gl(1|1) is given by

[e, f ]s = h1 + h2, [e, e]s = [f, f ]s = [hi, hj ]s = 0,
[e, h1]s = −e, [f, h1]s = f,
[e, h2]s = e, [f, h2]s = −f,

where i, j ∈ {1, 2}.
Let h+ := h1 + h2 and h− := h1 − h2. Then h+ is central in gl(1|1), in the sense that

[h+, x]s = 0 for all x ∈ gl(1|1), and h− satisfies

[e, h−]s = −2e, [f, h−]s = 2f, [h−, h−]s = 0.

Note that the elements h+, h−, e, and f form a basis for gl(1|1) and that the Lie superbracket
on gl(1|1) is completely characterized by the aforementioned properties of h+ and h− and
by the relations [e, f ]s = h+ and [e, e]s = [f, f ]s = 0.

We will now describe a family of irreducible gl(1|1) representations L(m,n) parameterized

by pairs of integers (m,n) ∈ Z2. It is not hard to see that every finite-dimensional irreducible
gl(1|1) representation on which h1 and h2 act with integer eigenvalues is isomorphic to one
of the representations in this family, up to a possible shift of the supergrading. See [6] and
[27].

If (m,n) ∈ Z2 satisfies m+n = 0, then L(m,n) is 1-dimensional and supported in superde-
gree 0̄. The elements (h1, h2) act by scalar multiplication by (m,n) on this representation,
and the elements e and f act by zero. Note that L(0,0) is a trivial representation, where
trivial means that all generators of gl(1|1) act by zero.

If (m,n) ∈ Z2 satisfies m + n 6= 0, then L(m,n) is 2-dimensional and spanned by two
homogeneous vectors v+ and v− of superdegrees n̄ and n̄+ 1̄, respectively. In this case, the
action of gl(1|1) relative to the basis {v+, v−} is given by the following matrices:

ρL(m,n)
(h1) =

(
m 0
0 m− 1

)
, ρL(m,n)

(h2) =

(
n 0
0 n+ 1

)
,

ρL(m,n)
(e) =

(
0 m+ n
0 0

)
, ρL(m,n)

(f) =

(
0 0
1 0

)
.

Note that for m = 1 and n = 0, the above matrices coincide with the matrices h1, h2,
e, and f . Thus, the representation L(1,0) is equal to the fundamental representation C1|1 of
gl(1|1), on which gl(1|1) acts by ρC1|1 = idgl(1|1). In the remainder of this section, we will

denote the fundamental representation L(1,0) = C1|1 by V . The dual representation, V ∗,
can be seen to be isomorphic to the representation L(0,−1), where an isomorphism is given
by the linear map which sends the basis {v∗+, v∗−} of V ∗ = L∗(1,0) to the basis {v−, v+} of

L(0,−1).
In the next subsection, we will see that the representations V ∗⊗V and V ⊗V ∗ each contain

a trivial 1-dimensional subrepresentation and a trivial 1-dimensional quotient representation,
but no trivial direct summand. In particular, these representations are indecomposable but
not irreducible. We will actually study the isomorphic (up to a grading shift) representations
V ∗〈1〉 ⊗ V and V ⊗ (V ∗〈1〉) since these representations will be needed later in this paper.

2.3. gl(1|1) action on the representations V ∗〈1〉 ⊗ V and V ⊗ (V ∗〈1〉). As before, let
V denote the fundamental representation of gl(1|1). For reasons that will become clear
later, we will identify the vector superspaces underlying the representations V ∗〈1〉 and V
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by using the identifications v∗+ = −v− and v∗− = v+. It is not hard to see that, under these
identifications, the action of gl(1|1) on V ∗〈1〉 ⊗ V is given as follows:

v− ⊗ v+ − v+ ⊗ v−

v+ ⊗ v+ v− ⊗ v−

v+ ⊗ v− + v− ⊗ v+

f=−1

(h1,h2)=(1,−1)

e=−1

(h1,h2)=(−1,1)

e=2 f=−2

For example, e sends the vector v+⊗v−+v−⊗v+ to 2v+⊗v+ and f sends this vector to
−2v−⊗ v−. Likewise, h1 and h2 annihilate the vectors v+⊗ v− and v−⊗ v+ and act on the
vectors v+ ⊗ v+ and v− ⊗ v− by scalar multiplication by (h1, h2) = (1,−1) and (h1, h2) =
(−1, 1), respectively. Since there are no arrows ending at the vector v+⊗ v−+ v−⊗ v+, this
vector spans a trivial 1-dimensional quotient representation, and since there are no arrows
emanating from v−⊗v+−v+⊗v−, this vector spans a trivial 1-dimensional subrepresentation.
Let p : V ∗〈1〉 ⊗ V → C〈1〉 and i : C〈1〉 → V ∗〈1〉 ⊗ V denote the associated projection
and inclusion maps, where C denotes the trivial 1-dimensional representation C = L(0,0).
Explicitly, p sends v+ ⊗ v− and v− ⊗ v+ to 1 and v+ ⊗ v+ and v− ⊗ v− to zero, and i sends
1 to v− ⊗ v+ − v+ ⊗ v−. For later use, we also the introduce maps

p̃ : V ∗〈1〉 ⊗ V −→ C⊕ (C〈1〉), ĩ : C⊕ (C〈1〉) −→ V ∗〈1〉 ⊗ V,

defined as the compositions

V ∗〈1〉 ⊗ V p−→ C〈1〉 i2−→ C⊕ (C〈1〉), C⊕ (C〈1)〉 p1−→ C〈1〉 i−→ V ∗〈1〉 ⊗ V,

respectively, where i2 : C〈1〉 → C⊕ (C〈1〉) is the inclusion of C〈1〉 into the second summand,
and p1 : C ⊕ (C〈1〉) → C〈1〉 is the projection onto the first summand, up to a shift of the
supergrading. By construction, p̃ and ĩ intertwine the action of gl(1|1) and have superdegrees
0̄ and 1̄, respectively.

The action of gl(1|1) on V ⊗ (V ∗〈1〉) is given by almost the same diagram as the one
above, with the only difference being that the arrow labeled f = −1 is replaced by an arrow
labeled f = 1 and the arrow labeled f = −2 is replaced by an arrow labeled f = 2. In
particular, there are maps p̃ : V ⊗ (V ∗〈1〉) → C ⊕ (C〈1〉) and ĩ : C ⊕ (C〈1〉) → V ⊗ (V ∗〈1〉)
which are defined by the same formulas as before and which intertwine the action of gl(1|1).

2.4. gl(1|1) actions on the exterior algebra of a vector space. We end this section
with a natural construction of gl(1|1) actions on the exterior algebra of a vector space.

Let U be a vector space equipped with a symmetric bilinear inner product 〈−,−〉 and
let U ′ := Λ∗(U) be its exterior algebra. We may regard U ′ as a vector superspace by
collapsing the natural Z≥0-grading on the exterior algebra to a Z2-grading. Choose two
vectors a, b ∈ U and a constant N ∈ C, and define a linear map ρU ′ : gl(1|1)→ gl(U ′) by

ρU ′(h+)(v) = 〈a, b〉v,
ρU ′(h−)(v) = (N − 2`)v,
ρU ′(e)(v) = a ⌟ v,
ρU ′(f)(v) = b ∧ v,
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Figure 1. Direction of the arrows in the “0” resolution and the “1” resolution.

where v ∈ U ′ is an element of the form v = u1 ∧ . . . ∧ u` for uj ∈ U and ` ≥ 0, and ⌟ is
defined by

u ⌟ v =
∑̀
j=1

(−1)j−1〈u, uj〉u1 ∧ . . . ∧ ûj ∧ . . . ∧ u`

for u ∈ U and v ∈ U ′ as before. Using this definition of ⌟, one can see that

a ⌟ (b ∧ v) + b ∧ (a ⌟ v) = 〈a, b〉v
for all v ∈ U ′. In particular, this implies that the map ρU ′ is compatible with the gl(1|1)
relation [e, f ]s = h+. Since ρU ′(h+) is given by multiplication by the constant 〈a, b〉, it is
further clear that ρU ′(h+) is central in gl(U ′). Moreover, the map v 7→ a⌟v (resp., v 7→ b∧v)
lowers (resp., raises) the number of factors in a wedge product by one, and together with
the definition of ρU ′(h−), this implies that ρU ′ respects the gl(1|1) relations [e, h−]s = −2e
and [f, h−]s = 2f . It is easy to see that ρU ′ is also compatible with the gl(1|1) relations
[e, e]s = [f, f ]s = [h−, h−]s = 0, and hence ρU ′ endows U ′ with a well-defined action of
gl(1|1).

One can slightly modify the above definition of ρU ′ by replacing b ∧ v by v ∧ b and a ⌟ v
by v ⌞ a, where v ⌞ a := (−1)`−1a ⌟ v for v ∈ U ′ as before. This modified definition also
yields a well-defined action of gl(1|1) on U ′.

3. Odd annular Khovanov homology as a gl(1|1) module

3.1. Odd annular Khovanov homology. Let A be a closed, oriented annulus, I = [0, 1]
the closed, oriented unit interval. Via the identification

A× I = {(r, θ, z) r ∈ [1, 2], θ ∈ [0, 2π), z ∈ [0, 1]} ⊂ (S3 = R
3 ∪∞),

any link, L ⊂ A× I, may naturally be viewed as a link in the complement of a standardly
imbedded unknot, (U = z–axis ∪ ∞) ⊂ S3. Such an annular link L ⊂ A × I admits a
diagram, P(L) ⊂ A, obtained by projecting a generic isotopy class representative of L onto
A × {1/2}. From this diagram one can construct a triply-graded chain complex called the
annular Khovanov complex associated to the annular link L, by using a version of Khovanov’s
original construction [13] due to Asaeda-Przytycki-Sikora [1] and L. Roberts [25] (see also
[10]). We now proceed to describe an odd version of the annular Khovanov complex, using
the construction of Ozsváth-Rasmussen-Szabó in [15].

Begin by decorating the diagram with an arrow (called an orientation in [15]) at each
crossing, as follows. Position the crossing so its overstrand connects the upper left (NW) to
the lower right (SE) corner and draw an arrow on the crossing pointing either up or down.
This choice will specify arrows for the two resolutions of the crossing, as follows. The arrow
for the “0” resolution will agree with the arrow at the crossing, and the arrow for the “1”
resolution will be rotated 90◦ clockwise. See Figure 1.

Now view the decorated diagram P(L) ⊂ A instead as a diagram on S2−{X,O}, where X
(resp., O) are basepoints on S2 corresponding to the inner (resp., outer) boundary circles of
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A. If we temporarily forget the data of X, we may view P(L) as a diagram on R2 = S2−{O}
and form the ordinary bigraded odd Khovanov complex

CKhodd(P(L)) =
⊕

(i,j)∈Z2

CKhiodd(P(L); j)

as described in [15] and briefly recalled below.
Let X denote the set of crossings of P(L). For each map I : X → {0, 1} one obtains an

associated decorated imbedded 1–manifold, PI(L) ⊆ S2 − {O} obtained by resolving and
decorating each crossing as specified by I. Choosing an ordering of the c crossings identifies
these decorated complete resolutions with the vertices of a c–dimensional hypercube whose
edges correspond to saddle cobordisms between decorated complete resolutions.

Remembering the data of X, we now associate to each vertex of this hypercube of decorated
resolutions a chain complex whose underlying Z3–graded vector space is defined as follows.
For each I : X → {0, 1} let

V (I) := SpanC{a1, . . . , an}
be the formal span of the components, a1, . . . , an, of PI(L). Then the C vector space we
assign to the vertex I is

F (I) := Λ∗(V (I)).

It will be convenient to note that F (I) has a distinguished basis indexed by subsets S ⊆
{1, . . . , n}. Given such a subset S = {i1, . . . , i`} ⊆ {1, . . . , n} whose elements have been
arranged in order (i1 < . . . < i`), we will denote the associated basis element of F (I) by

aS := ai1 ∧ . . . ∧ ai` .

Now each vector space F (I) is endowed with a homological (i) and quantum (j) grading
exactly as in [13, 15], and these gradings do not depend on the data of X. The odd Khovanov
differential,

∂ : CKhodd(P(L))→ CKhodd(P(L)),

which also does not depend on the data of X, is defined exactly as in [13, 15] as a signed
sum (specified by an edge assignment as in [15, Defn. 1.1]) of elementary merge maps,
FM : F (I)→ F (I ′) and split maps F∆ : F (I)→ F (I ′) associated to edges of the hypercube.

For completeness, the definitions of FM and F∆ are also briefly recalled below.
Let I0, I1 : X → {0, 1} be two vertices for which there is an oriented edge from I0 to I1,

as in [15, p.3].1 If two components, a1 and a2, of PI0(L) merge to a single component, a, of
PI1(L), there is a natural identification V (I1) ∼= V (I0)/(a1 − a2) coming from identifying a
with [a1] = [a2]. The merge map

FM : Λ∗V (I0)→ Λ∗V (I1)

is the map on the exterior algebra induced by the projection followed by this natural iden-
tification: V (I0)→ V (I0)/(a1 − a2) ∼= V (I1).

If a single component, a, of PI0(L) splits into two components, a1 and a2, of PI1(L) and
the local arrow decorating the split region points from a1 to a2, then the split map is defined
by

F∆ : Λ∗(V (I0)) −→ Λ∗
(

V (I1)

(a1 − a2)

)
−→ (a1 − a2) ∧ Λ∗V (S1) −→ Λ∗V (S1),

1I1 is sometimes called an immediate successor of I0.
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Figure 2. Annular link diagram P(L) and an oriented Kauffman state of
P(L) of “k” degree −2. For simplicity, the arrows at the crossings are not
shown in the picture.

where the first map is the inverse of the natural identification described in the definition of
the merge map, the final map is the inclusion, and the middle map is an explicit identification
of the exterior algebra of the quotient, V (I1)/(a1 − a2), as

(a1 − a2) ∧ Λ∗V (S1) ⊂ Λ∗V (I1).

To obtain the annular (k) grading, begin by choosing an oriented arc γ from X to O that
misses all crossings of P(L). It will be clear from the construction that the k grading is
independent of this choice.

Exactly as in the even case (cf. [11, Sec. 4.2]), we have a one-to-one correspondence
between distinguished basis elements aS of F (I) ⊆ CKhodd(P(L)) and orientations of the
Kauffman state PI(L), defined as follows. Choose the clockwise (CW) orientation on a
component ai of the Kauffman state if i ∈ S and the counterclockwise (CCW) orientation
on ai if i 6∈ S. The “k” grading of a distinguished basis element is now defined to be the
algebraic intersection number of the corresponding oriented Kauffman state with a fixed
oriented arc γ from X to O that misses all crossings of P(L). See Figure 2.

Lemma 3. The odd Khovanov differential ∂ : CKhodd(P(L)) → CKhodd(P(L)) is non-
increasing in the k grading. Indeed, it can be decomposed as ∂ = ∂0 + ∂−, where ∂0 has
k-degree 0, and ∂− has k-degree −2.

Proof. Roberts proves ([25, Lem. 1]) that the even Khovanov differential is non-increasing
in this extra grading and decomposes according to k–degree as described in the statement
of the lemma. As noted in [16] and [15], the odd merge and split maps FM and F∆ agree
modulo 2 with the merge and split maps in even Khovanov homology, so the odd Khovanov
differential, ∂, has precisely the same decomposition according to k–degree. �

Decomposing ∂2 = 0 into its k–homogeneous pieces, we see that ∂0, ∂− are two anticom-
muting differentials on CKhodd(L). The homology with respect to ∂0 is triply-graded. We
will denote it by:

AKhodd(L) :=
⊕

(i,j,k)∈Z3

AKhiodd(L; j, k)

and refer to it as the odd annular Khovanov homology of L.
In the next subsection, we will define a gl(1|1) action on AKhodd(L) and show that this

action is invariant under annular Reidemeister moves, hence yields an invariant of the isotopy
class of L ⊆ A × I. We will also discuss the interaction of the gl(1|1) action with the i, j,
and k gradings on the complex and conclude that, when regarded simply as a triply-graded
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vector space without a Lie superalgebra action, AKhodd(L) is an invariant of the isotopy
class of L ⊆ A× I.

3.2. Definition and invariance of the gl(1|1) action on AKhodd(L). As before, we
will denote by V (I) the formal span of the components a1, . . . , an of PI(L), and by F (I) =
Λ∗(V (I)) the exterior algebra of V (I).

We will further use the following notations: |L| will denote the number of link components,
n+ (resp., n−) will denote the number of positive (resp., negative) crossings in the link
projection, and |I| will denote the number of crossings c ∈ X such that I(c) = 1. Moreover,
nt (resp., ne) will denote the number of trivial (resp., essential) components of PI(L),
where a component ai is called trivial (resp., essential) if it is zero (resp., nonzero) in the
first homology of S2 − {X,O}.

Using these notations, we can define the tri-degree of an element ai1 ∧ . . . ∧ ai` ∈ F (I)
by i = |I| − n−, j = n− 2`+ |I|+ n+ − 2n−, and k = ne − 2`e, where n = nt + ne denotes
the number of components of PI(L) and `e denotes the number of indices r ∈ {1, . . . , `} for
which the component air is essential.

We will now regard F (I) as a vector superspace with the supergrading given by the
modulo 2 reduction of (j − |L|)/2, where j denotes the quantum degree just defined. It
is known that j always has the same parity as |L|, and hence the modulo 2 reduction of
(j − |L|)/2 is well-defined.

In what follows, we will assume that the components a1, . . . , an are ordered so that
a1, . . . , ant are trivial and ant+1, . . . , an are essential, and that the essential components
are ordered according to their proximity to the basepoint X, so that ant+1 is the essential
component which is closest to X.

We can then write F (I) as a tensor product of two vector superspaces

F (I) = Λ∗(SpanC{a1, . . . , ant})⊗ Λ∗(SpanC{ant+1, . . . , an}),

where we define the supergrading on the two tensor factors as follows. If ` denotes the
natural Z≥0 degree on the exterior algebra, then the superdegree on the first tensor factor
is given by the modulo 2 reduction of `+ (n+ |I|+n+− 2n−− |L|)/2, and the superdegree
on the second tensor factor as the modulo 2 reduction of `.

Now equip SpanC{ant+1, . . . , an} with the unique symmetric bilinear form 〈−,−〉 for
which the vectors ant+1, . . . , an are orthonormal, and let aI , bI ∈ SpanC{ant+1, . . . , an} be
the vectors

aI := ant+1 + ant+2 + . . .+ an and bI := ant+1 − ant+2 + . . .+ (−1)ne−1an.

Observe that 〈aI , bI〉 = m, where

m =

{
0 if ne is even,

1 if ne is odd.

Since ne has the same parity as the winding number of L around X, m only depends on the
parity of this winding number and not on the particular choice of I. Define a linear map
ρU ′ : gl(1|1)→ gl(U ′) for U ′ := Λ∗(SpanC{ant+1, . . . , an}) by

ρU ′(h+)(ai1 ∧ . . . ∧ ai`) = mai1 ∧ . . . ∧ ai` ,
ρU ′(h−)(ai1 ∧ . . . ∧ ai`) = (ne − 2`)ai1 ∧ . . . ∧ ai` ,
ρU ′(e)(ai1 ∧ . . . ∧ ai`) = (ai1 ∧ . . . ∧ ai`) ⌞ aI ,
ρU ′(f)(ai1 ∧ . . . ∧ ai`) = ai1 ∧ . . . ∧ ai` ∧ bI

for all nt + 1 ≤ i1 < . . . < i` ≤ n.
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Comparing with Subsection 2.4, we see that ρU ′ endows the vector superspace U ′ with a
well-defined action of gl(1|1). We can extend this action to an action on F (I) by regarding
Λ∗(SpanC{a1, . . . , nt}) as a trivial gl(1|1) representation. In other words, we can define a
gl(1|1) action on F (I) by setting

ρF (I)(x) := id⊗ ρU ′(x)

for all x ∈ gl(1|1), where id denotes the identity map of Λ∗(SpanC{a1, . . . , nt}), and ⊗
denotes the ordinary (ungraded) tensor product of linear maps.

Remark 3. The reader should note that h− acts on a vector ai1 ∧ . . . ∧ ai` ∈ F (I) by
scalar multiplication by k = ne− 2`e, where `e denotes the number of essential components
in the wedge product ai1 ∧ . . . ∧ ai` . Therefore, the k-grading on F (I) can be viewed as
the “weight space grading” with respect to the action of h−. It is further clear that the
gl(1|1) action preserves the i-grading because the i-grading is constant on F (I). Moreover,
the gl(1|1) action preserves the (j − k)-grading because the gl(1|1) action preserves the
number `t of trivial components in a wedge product ai1 ∧ . . . ∧ ai` ∈ F (I), and j − k =
n− 2`+ |I|+ n+ − 2n− − (ne − 2`e) = nt − 2`t + |I|+ n+ − 2n−.

Lemma 4. Let I0, I1 : X → {0, 1} be two vertices of the resolution hypercube for which there
is an oriented edge from I0 to I1 and let FW : F (I) → F (I ′) for W = M or W = ∆ be
the associated merge or split map. Then the k-degree preserving part of FW intertwines the
actions of gl(1|1) on F (I) and F (I ′).

Although it is possible to prove Lemma 4 directly, we will defer the proof to the next
subsection, where we will give an alternative description of the gl(1|1) action on F (I)

Lemma 4 tells us that the boundary maps in the odd annular Khovanov complex inter-
twine the gl(1|1) action, and this in turn implies that there is an induced gl(1|1) action on
the odd annular Khovanov homology of an annular link diagram. By the remark preceding
the lemma, it is further clear that this action preserves two gradings, namely the i-grading
and the (j−k)-grading. In this sense, odd annular Khovanov homology becomes a bigraded
gl(1|1) representation.

Theorem 1. If two annular link diagrams P(L) and P(L′) differ by an annular Reidemeis-
ter move, then AKhodd(L) and AKhodd(L

′) are isomorphic as bigraded gl(1|1) representati-
ons.

Proof. Our proof of this theorem will closely follow the original proof of invariance of odd
Khovanov homology given in [15]. In each step of the proof, we will verify that the relevant
complexes and chain maps defined in [15] are compatible with the gl(1|1) actions on the
F (I) when reinterpreted in the annular setting.

Invariance under annular Reidemeister moves of type I. Consider an annular link diagram
D′ which is obtained from an annular link diagram D by performing a left-twist Reidemeister
I move, so that D′ contains a single positive crossing which is not already present in D. Let
D0 and D1 denote the two diagrams obtained from D′ by resolving this crossing in the two
possible ways. See Figure 3. Then D1 is isotopic to D, and D0 is isotopic to a union of D
with a small unknotted circle.

Arguing as in the proof of [15, Prop.3.1], we can identify the odd annular Khovanov
complex of D′ with a mapping cone of a chain map

D : ACKhodd(D0) −→ ACKhodd(D1),

where ACKhodd(Di) denotes the odd annular Khovanov complex of Di. The map D is
surjective, and hence its mapping cone is quasi-isomorphic to ker(D). Moreover, since D is
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Figure 3. Reidemeister I. The diagram D′ and the resolutions D0 and D1.

given by boundary maps, it intertwines the action of gl(1|1), and hence ker(D) is itself a
gl(1|1) representation.

Let v0 denote the small circular component of D0 and let v1 denote the component which
connects to v0. Note that while v0 is always trivial, v1 can either be trivial or essential.
In the former case, ker(D) is equal to the complex (v1 − v0) ∧ ACKhodd(D0), and using
that gl(1|1) acts trivially on v0 and v1, one can see that this complex is isomorphic (in the
category of complexes of gl(1|1) representations) to the complex ACKhodd(D). Similarly, if
v1 is essential, then ker(D) is equal to v0 ∧ ACKhodd(D0), and using that v0 is trivial, one
can again see this complex is isomorphic to ACKhodd(D). In either case, we therefore obtain
that ACKhodd(D′) is quasi-isomorphic to ACKhodd(D), proving invariance under annuular
Reidemeister moves of type I.

Invariance under annular Reidemeister moves of type II. Next, assume D′ is obtained
from D by performing an annular Reidemeister move of type II. For i, j ∈ {0, 1}, let Dij
denote the diagram obtained from D′ by choosing the i- and the j-resolution at the two
crossings of D′ which are not present in D. Assume the numbering of the crossings is such
that D01 is isotopic to D, and D10 is obatined from D00 by adding a small unknotted circle.
See Figure 4. Following the proof of [15, Prop. 3.2], we can write the complex ACKhodd(D′)
in the following form:

ACKhodd(D01) ACKhodd(D11)

ACKhodd(D00) ACKhodd(D10)

In this diagram, all arrows represent maps of gl(1|1) representations. Let v2 denote the
small circular component in D10 and let X ⊂ ACKhodd(D10) be the subcomplex spanned
by all elements of the form ai1 ∧ . . . ∧ ai` which don’t contain v2 as a factor. Since v2 is
a trivial component, gl(1|1) acts trivially on v2, and hence the gl(1|1) action preserves the
subcomplex X. Moreover, the restriction X → ACKhodd(D11) of the right vertical arrow to
X is an isomorphism, and thus the above complex is quasi-isomorphic to a complex of the
form

ACKhodd(D01)

ACKhodd(D00) ACKhodd(D10)/X.

In this complex, the horiziontal arrow is an isomorphism, and so the above complex is
quasi-isomorphic to ACKhodd(D01), which is in turn isomorphic to ACKhodd(D).

Invariance under annular Reidemeister moves of type III. Suppose D′ is obtained from D
by performing an annular Reidemeister III move. By repeating the arguments used in the
proof of [15, Prop. 3.3], one can show that ACKhodd(D) is quasi-isomorphic to a complex
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Figure 4. Reidemeister II. The diagram D′ and the resolutions Dij .

L, which fits into a short exact sequence

0 −→ R
Ψ−→ L

Φ−→ P −→ 0.

In [15], the complexes L and R are depicted on the left and on the right of Figure 11, and
the complex P is depicted in Figure 10. Using similar arguments as above, one can see
that the complexes R, L, and P are complexes of gl(1|1) representations, and that L is
quasi-isomorphic to ACKhodd(D) in the category of gl(1|1) representations. Moreover, the
maps Ψ and Φ are given by scalar multiplication on the spaces associated to the vertices of
(partial) resolution cubes, and since gl(1|1) acts these spaces by linear endomorphisms, it
is clear that Ψ and Φ intertwine the gl(1|1) actions. As in the proof of [15, Prop. 3.3], the
complex R is acyclic, and so L and hence ACKhodd(D) is quasi-isomorphic in the category
of gl(1|1) representations to P .

By repeating the above arguments, one can show that ACKhodd(D′) is quasi-isomorphic
to an analogous complex P ′, and arguing as in the proof of [15, Prop. 3.3], one can see that
this complex agrees with the complex P up to possible signs. Following [15], one can then
show that P is isomorphic to P ′, via an isomorphism which is given by scalar multiplication
on the spaces associated to vertices of (partial) resolution cubes. Since gl(1|1) acts linearly
on these spaces, it follows that this isomorphism intertwines the gl(1|1) actions, and so the
complexes ACKhodd(D) and ACKhodd(D′) are quasi-isomorphic in the category of gl(1|1)
representations. �

Remark 4. The choice of the supergrading on odd annular Khovanov homlology is not
unique. In fact, by the definitions and by Remark 3, the boundary maps and the gl(1|1)
action preserve the (j − k)-grading. Therefore, any shift of the supergrading by a function
of j − k yields a new supergrading, which is also compatible with the gl(1|1) action. For
example, shifting the superdgree by the modulo 2 reduction of (j−k+ |L|+m)/2, where m
is as in the definition of the gl(1|1) action, yields a new superdegree, which is given explicitly
by the modulo 2 reduction of (k −m)/2.

3.3. An alternative description of the gl(1|1) action. In this subsection, we will iden-

tify the vector superspace F (I) with an isomorphic vector superspace F̃ (I). Using this
identification, we will give a new description of the gl(1|1) action on F (I) and of the boun-
dary maps in the odd annular Khovanov complex. We will then use this description to prove
a stronger version of Theorem 1.
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As before, we will denote by a1, . . . , an the components of the resolution PI(L). Moreo-
ver, we will denote by V a 2-dimensional vector superspace spanned by two homogeneous
elements v+ and v− of superdegrees 0̄ and 1̄, respectively. Let F̃ (I) denote the vector
superspace

F̃ (I) := (V ⊗ . . .⊗ V )〈(n+ |I|+ n+ − 2n− − |L|)/2〉,
where there are n tensor factors on the right-hand side, and where it is understood that the
ith tensor factor corresponds to the component ai. We can define an isomorphism of vector
superspaces

αI : F (I) −→ F̃ (I)

by sending the element ai1 ∧ . . .∧ai` ∈ F (I) for i1 < . . . < i` to the element vε1⊗ . . .⊗vεn ∈
F̃ (I) where

εi =

{
+ if i /∈ {i1, . . . , i`},
− if i ∈ {i1, . . . , i`}.

Remark 5. Under this isomorphism, the (i, j, k)-trigrading on F (I) correspond to an

(i, j, k)-trigrading on F̃ (I). Explicitly, the i-grading is constant on F̃ (I) and given by

i = |I| − n−. The j-grading on F̃ (I) is given by

j(vε1 ⊗ . . .⊗ vεn) = j(vε1) + . . .+ j(vεn) + |I|+ n+ − 2n−,

where the j-grading on the ith tensor factor is defined by j(v±) := ±1. The k-grading on

F̃ (I) is given by

k(vε1 ⊗ . . .⊗ vεn) = k(vε1) + . . .+ k(vεn),

where the k-grading on the ith tensor factor is defined by k(v±) := 0 if ai is trivial, and
k(v±) := ±1 if ai is essential.

Remark 6. It should be noted that the map αI depends nontrivially on the ordering of
the components a1, . . . , an of the resolution PI(L). However, different orderings lead to
coherent maps αI , in the following sense. If two orderings differ by exchanging the ai and
ai+1, then the maps αI and α′I associated to these two orderings fit into a commutative
diagram

F̃ (I)

F (I)

F̃ (I)

id⊗(i−1)⊗τ⊗id⊗(n−i−1)

αI

α′I

where τ : V ⊗V → V ⊗V denotes the twist map given by τ(v⊗w) = (−1)|v||w|w⊗ v for all
homogeneous elements v, w ∈ V .

Remark 7. Let α̃I denote the map αI without the overall shifts of the supergrading on
the domain and the codomain. That is, α̃I is a map

α̃I : Λ∗(SpanC{a1, . . . , an}) −→ V ⊗n,

where the supergrading on the exterior algebra is defined by collapsing the natural Z≥0-
grading on the exterior algebra to a Z2-grading. We can now identify the ith tensor factor
of V ⊗n with Λ∗(SpanC{ai}) by using the linear map given by v+ 7→ 1 and v− 7→ ai. Under
this identification, the map α̃I becomes the “obvious” algebra isomorphism

α̃I : Λ∗(SpanC{a1, . . . , an}) −→ Λ∗(SpanC{a1})⊗ . . .⊗ Λ∗(SpanC{an})
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given by sending the generator ai to the element 1⊗ . . .⊗ 1⊗ai⊗ 1⊗ . . . 1. Here, ⊗ denotes
the supergraded tensor product of supergraded algebras: it is the ordinary tensor product
on the level of vector superspaces, but the algebra multiplication is given by (a⊗b)·(c⊗d) :=
(−1)|b||c|(a · c)⊗ (b · d) for all homogeneous algebra elements a, b, c, d.

We will now define a gl(1|1) action on the vector superspace F̃ (I). To define this action,
we will first define a gl(1|1) action on each tensor factor of

F̃ (I) = V ⊗n〈(n+ |I|+ n+ − 2n− − |L|)/2〉,

and then regard F̃ (I) as the tensor product representation (with shifted supergrading).
As in the previous subsection, we will assume that the components of PI(L) are ordered

so that the trivial ones precede the essential ones, and that the essential components of
PI(L) are ordered according to their proximity to the basepoint X.

If V is a tensor factor of F̃ (I) which corresponds to a trivial component of PI(L), then

we now define the gl(1|1) action on V to be trivial. If V is a tensor factor of F̃ (I) which
corresponds to an essential component ai with i− nt − 1 even, then we identify V with the
fundamental representation V = L(1,0) = C1|1 of gl(1|1). Explicilty, the gl(1|1) action on
such a factor is given by:

v+ v−(h1,h2)=(1,0)

f=1

e=1

(h1,h2)=(0,1)

Finally, if V is a tensor factor of F̃ (I) which corresponds to an essential component ai
with i − nt − 1 odd, then we identify V with the representation V ∗〈1〉 = L∗(1,0)〈1〉 via the

map which takes v+ to v∗− and v− to −v∗+. Explicitly, the gl(1|1) action on such a factor is
given by:

v+ v−(h1,h2)=(0,−1)

f=−1

e=1

(h1,h2)=(−1,0)

In summary, we obtain a gl(1|1) action on F̃ (I), and we now claim that this action
corresponds to the gl(1|1) action on F (I) defined in the previous subsection.

Lemma 5. For each I : X → {0, 1}, the isomorphism αI : F (I) → F̃ (I) intertwines the

gl(1|1) actions on F (I) and F̃ (I).

Proof. On both F (I) and F̃ (I), the generator h+ = h1 + h2 acts by multiplication by
m, where m is equal to 0 if ne is even and equal to 1 if ne is odd. Likewise, the generator
h− = h1−h2 acts on both F (I) and F̃ (I) by multiplication by k, where k denotes the annular
grading. Thus it is clear that αI intertwines the actions of h+ and h− and, therefore, also
the actions of h1 and h2.

To see that αI also intertwines the actions of e and f , we first note that e and f act
trivially on Λ∗SpanC{a1, . . . , ant} and also on the first nt tensor factors of F̃ (I), as these
correspond to the trivial components a1, . . . , ant .

Now suppose ai is an essential component, and suppose that the essential components are
ordered according to their proximity to the basepoint X, as before. If i−nt−1 is even, then
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the definitions of aI and bI imply that e and f act on Λ∗SpanC{ai} by the maps v 7→ v ⌞ ai
and v 7→ v ∧ ai, respectively. Explicitly,

1 ai

f=1

e=1

and this diagram is consistent with the diagram for the gl(1|1) action on the ith tensor

factor of F̃ (I).
Likewise, if i− nt − 1 is odd, then e and f act on Λ∗SpanC{ai} by the maps v 7→ v ⌞ ai

and v 7→ v ∧ (−ai), or more explicitly,

1 ai

f=−1

e=1

and again this diagram is consistent with the diagram for the gl(1|1) action on the ith tensor

factor of F̃ (I).
To complete the proof, we note that if the maps v 7→ v ⌞ ai and v 7→ v ∧ (±ai) act on a

wedge product of the form

ai1 ∧ . . . ∧ air ∧ Λ∗SpanC{ai} ∧ ais ∧ . . . ∧ ai`
for i1 < . . . < ir < i < is < . . . < i`, then they pick up the sign (−1)`−s+1, where the sign
comes from permuting ±ai across ais ∧ . . . ∧ ai` . Because of our definition of the tensor
product of gl(1|1) representations, the same sign occurs when e and f act on the tensor
product

vε1 ⊗ . . .⊗ vεi−1
⊗ V ⊗ vεi+1

⊗ . . .⊗ vεn ,
where here ε1, . . . , εi−1, εi+1, . . . , εn are related to i1, . . . , ir, is, . . . , i` as in the definition of
the map αI . �

The next lemma will relate the merge and split maps FM and F∆ to the maps m : V ⊗V →
V and ∆: V → V ⊗ V defined as follows:

m =

{
v+ ⊗ v+ 7−→ v+, v+ ⊗ v− 7−→ v−,

v− ⊗ v− 7−→ 0, v− ⊗ v+ 7−→ v−,

∆ =

{
v+ 7−→ v− ⊗ v+ − v+ ⊗ v−,
v− 7−→ v− ⊗ v−.

Note that m is homogeneous of superdegree 0̄ and ∆ is homogeneous of superdegree 1̄.

Lemma 6. Let I0, I1 : X → {0, 1} be two vertices of the resolution hypercube for which there
is an oriented edge from I0 to I1. Denote by a1, . . . , an the components of PI0(L) and by
a′1, . . . , a

′
n∓1 the components of PI1(L), and let ⊗ denote the tensor product of homogeneous

linear maps defined in Subsection 2.1.

(1) If the components ai and ai+1 merge into the component a′i, and if aj = a′j for j < i
and aj = a′j−1 for j > i+ 1, then

αI1 ◦ FM ◦ α−1
I0

= id⊗(i−1) ⊗m⊗ id⊗(n−i−1).
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(2) If the component ai splits into the components a′i and a′i+1, and if aj = a′j for j < i
and aj = a′j+1 for j > i, then

αI1 ◦ F∆ ◦ α−1
I0

= id⊗(i−1) ⊗∆⊗ id⊗(n−i),

where it is assumed that the arrow decorating the split region points from a′i to a′i+1.

Proof. Recalling the definitions of FM , F∆, and ⊗, it is easy to see that we can reduce to
case where one of PI0(L) and PI1(L) has exactly two components and the other one has
exactly one component.

Suppose first that PI0(L) has exactly two components a1 and a2, and that PI1(L) has
a single component a′1. Then the map FM : F (I0) → F (I1) is given by sending each of the
components a1 and a2 to a′1. Explicitly,

FM =

{
1 7−→ 1, a1 7−→ a′1,

a1 ∧ a2 7−→ 0, a2 7−→ a′1,

and comparing with the definition of m, we see that αI1 ◦ FM ◦ α−1
I0

= m.

Now suppose that PI0(L) has a single component a1, and that PI1(L) has exactly two
components a′1 and a′2. Then the map F∆ : F (I0) → F (I1) is given by first sending a1 to
either a′1 or a′2, and then wedge-multiplying the result from the left by a′1 − a′2 (where we
assume that the arrow decorating the split region points from a′1 to a′2). Explicitly,

F∆ =

{
1 7−→ a′1 − a′2,
a1 7−→ a′1 ∧ a′2,

and comparing with the definition of ∆, we see that αI1 ◦ F∆ ◦ α−1
I0

= ∆. �

We may now regard m and ∆ as maps associated to merge and split operations between
resolutions on an annulus. Since, up to a sign in the definition of ∆(v+), m and ∆ coincide
with Khovanov’s multiplication and comultiplication maps, it follows that they exhibit the
same behavior with respect to the k-grading as the latter maps. In particular, it follows
from [25] that there are decompositions

m = m0 +m− and ∆ = ∆0 + ∆−,

where m0 and ∆0 have k-degree 0 and m− and ∆− have k-degree −2. The explicit form
of these decompositions depends on whether the components involved in the merge or split
operation are trivial or essential.

If all involved components are trivial, then m0 = m and ∆0 = ∆.
If a trivial component and an essential component are merged into a single essential

component, then the map v 7→ m0(v+⊗v) is the identity map and the map v 7→ m0(v−⊗v)
is the zero map, where here it is assumed that the first factor in V ⊗ V corresponds to the
trivial component. If the second factor corresponds to the trivial component, then the same
holds true, but with m0 replaced by m0 ◦ τ .

If a single essential component is split into a trivial component and an essential com-
ponent, then the map ∆0 is given by v 7→ v− ⊗ v, where here it is assumed that the first
factor of V ⊗ V corresponds to the trivial component. If the second factor corresponds to
the trivial component, then the same holds true, but with ∆0 replaced by −τ ◦∆0.

Finally, if two essential components are merged into a single trivial component, or if a
single trivial component is split into two essential components, then the corresponding maps
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m0 and ∆0 are given as follows:

m0 =

{
v+ ⊗ v+ 7−→ 0, v+ ⊗ v− 7−→ v−,

v− ⊗ v− 7−→ 0, v− ⊗ v+ 7−→ v−,

∆0 =

{
v+ 7−→ v− ⊗ v+ − v+ ⊗ v−,
v− 7−→ 0.

We can now prove Lemma 4 form the previous subsection.

Proof of Lemma 4. In view of Lemmas 5 and 6, it is enough to show that the maps

id⊗i−1 ⊗m0 ⊗ id⊗(n−i−1) and id⊗(i−1) ⊗∆0 ⊗ id⊗(n−i)

intertwine the gl(1|1) actions, where here the notation is to be understood as in the two parts
of Lemma 5. Since id intertwines the gl(1|1) actions and because of Lemma 1, it further
suffices to show that m0 and ∆0 intertwine the gl(1|1) actions when viewed as factors of
these maps.

If m0 and ∆0 correspond to merges and splits which only involve trivial components,
then this is obvious becasue in this case the gl(1|1) actions are trivial on the domain and
the codomain of m0 and ∆0.

If m0 corresponds to a merge of a trivial component with an essential component, then
m0 (or m0 ◦ τ) can be described in terms of the identity map or the zero map, depending on
whether the trivial component is labeled by v+ or v−, and these maps, too, intertwine the
gl(1|1) action. (Note that if m0 ◦ τ intertwines the gl(1|1) actions, then so does m0, because
τ is an isomorphism of gl(1|1) representations).

If further ∆0 corresponds to splitting an essential component into a trivial and an essential
component, then ∆0 (or −τ ◦∆0) is given by v 7→ v− ⊗ v, and again this map intertwines
the gl(1|1) action.

Finally, if m0 or ∆0 corresponds to merging to essential components into a single trivial
component, or to splitting a single trivial component into two essential components, then
m0 and ∆0 agree with the maps p̃ and ĩ defined in Subsection 2.3, and we have already seen
that these maps intertwine the gl(1|1) action. �

Using the alternative description of the gl(1|1) action in terms of the spaces F̃ (I), we can
now prove the following stronger version of Theorem 1.

Theorem 2. If two annular link diagrams P(L) and P(L′) differ by an annular Reidemeis-
ter move, then the odd annular Khovanov complexes ACKhodd(P(L)) and ACKhodd(P(L′))
are homotopy equivalent as complexes of gl(1|1) representations.

Proof. In [21], Putyra defines a category kChCob/`(0), which generalizes Bar-Natan’s ca-

tegory Cob3`(∅) defined in [3]. To each decorated link diagram P(L), Putyra assigns a chain
complex Kh(P(L)), which lives in the additive closure of kChCob/`(0), and which can be
viewed as a generalization of Bar-Natan’s formal Khovanov bracket of P(L).

Putyra shows that if two link diagrams P(L) and P(L′) differ by a Reidemeister move,
then there is a homotopy equivalence between the generalized Khovanov brackets Kh(P(L))
and Kh(P(L′)). Moreover, Putyra constructs a functor, called a chronological TQFT, which
takes Kh(P(L)) to the odd Khovanov complex of P(L).

Putyra’s construction can be carried out equally well in the annular setting. In particu-
lar, if P(L) is an annular link diagram, then one can associate an annular version of the
generalized Khovanov bracket, which lives in the additive closure of an annular version of
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the category kChCob/`(0). Moreover, there is a chronological TQFT defined on this an-
nular category, which takes the generalized annular Khovanov bracket of P(L) to the odd
annular Khovanov complex ACKhodd(P(L)). We will henceforth denote this chronologi-
cal TQFT by Fanno . Explicitly, Fanno is an additive functor given by assigning the maps
m0 : V ⊗ V → V and ∆0 : V → V ⊗ V to (suitably decorated) annular saddle cobordisms,
and the maps ι : C → V and ε : V → C given by ι(1) = v+, ε(v+) = 0, and ε(v−) = 1 to
(suitably decorated) annular cup and cap cobordisms.

We have already seen in the proof of Lemma 4 that the maps m0 and ∆0 intertwine the
gl(1|1) action. Since annular cup and cap cobordisms can only create or annihilate trivial
components, and since the gl(1|1) action is trivial on tensor factors corresponding to such
components, it is further clear that the maps ι and ε also intertwine the gl(1|1) action. We
can thus view the functor Fanno as a functor with values in the representation category of
gl(1|1). Since this functor is also additive, it takes the homotopy equivalences that Putyra
associates to Reidemeister moves to homotopy categories in the representation category of
gl(1|1), and this proves the theorem. �

Remark 8. The category kChCob/`(0) defined in [21] comes equipped with a Z×Z-grading
on its morphism sets. The modulo 2 reduction of the second Z-factor in this Z×Z-grading
corresponds to the supergrading used in our definition of the gl(1|1) action on odd annular
Khovanov homology.
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[15] P. Ozsváth, J. Rasmussen, and Z. Szabó. Odd Khovanov homology. Algebr. Geom. Topol., 13:1465–1488,

2013.
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