MAT 762, Algebraic Topology, Fall 2019 Homework Assignment 2

Problem 1. Recall that the projective plane \mathbb{RP}^2 can be obtained from S^1 by attaching a disk D^2 via a degree 2 map $\partial D^2 \to S^1$. In particular, there is a quotient map $f : \mathbb{RP}^2 \to \mathbb{RP}^2 / S^1 \cong S^2$.

- (a) Give S^1 its usual cell structure with just two cells and write down the cellular chain complexes for \mathbb{RP}^2 and $S^2 \cong \mathbb{RP}^2/S^1$, as well as the chain map $f_{\#}$ between these two chain complexes.
- (b) Compute the map $f_* \colon H_*(\mathbb{R}P^2) \to H_*(S^2)$.
- (c) Repeat parts (a) and (b) for coefficients in \mathbb{Z}_2 .
- (d) Conclude that there can't be a natural isomorphism

 $H_2(-;\mathbb{Z}_2) \cong H_2(-) \otimes \mathbb{Z}_2 \oplus \operatorname{Tor}(H_1(-),\mathbb{Z}_2)$

where natural would mean that for any two spaces X and Y and any continuous map $f: X \to Y$, the map that f induces on the left-hand side agrees with the direct sum of the maps that f induces on the summands on the right-hand side.

Problem 2. Fix n > 0 and let Y be the quotient space $\mathbb{R}^n/(\mathbb{R}^n - \{0\})$.

- (a) Describe the topological space Y explicitly.
- (b) Show that Y is contractible.
- (c) What is the reduced homology of Y? Is it isomorphic to $H_*(\mathbb{R}^n, \mathbb{R}^n \{0\})$?

Problem 3. Let X be the space obtained from S^1 by attaching a disk D^2 via the map $\partial D^2 \to S^1, z \mapsto z^m$, for m > 2.

- (a) Compute the cellular homology of X for coefficients in \mathbb{Q} .
- (b) Show that for any point $x \in S^1$, the space $X \{x\}$ deformation retracts to a bipartite graph with 2 vertices and m edges (no rigorous proof is required).
- (c) Use (a) and (b) to compute the second local homology of X for coefficients in \mathbb{Q} at a point $x \in S^1$.
- (d) Is X a 2-manifold?

This homework is due on Thursday, September 19, 2019.