## MAT 762, Algebraic Topology, Fall 2019 Homework Assignment 3

**Problem 1.** Let  $\mathbb{R}^{\infty}$  denote the space of all sequences  $x = (x_1, x_2, \ldots)$  of real numbers such that  $x_i \neq 0$  for only finitely many *i*. Further, let  $S^{\infty} \subset \mathbb{R}^{\infty}$  denote the unit sphere with respect to the Euclidean norm on  $\mathbb{R}^{\infty}$ . The sphere  $S^{\infty}$  has a cell decomposition

$$S^{\infty} = (e^0_+ \cup e^0_-) \cup (e^1_+ \cup e^1_-) \cup (e^2_+ \cup e^2_-) \cup \dots$$

where  $e_{+}^{n}$  and  $e_{-}^{n}$  are two *n*-cells given respectively by the upper  $(x_{n+1} > 0)$  and the lower  $(x_{n+1} < 0)$  hemisphere of  $S^{n} = S^{\infty} \cap \{x_{i} = 0 \mid i > n+1\}$ . Assume now that  $S^{\infty}$  is equipped with the topology induced by this cell decomposition, and let  $\tau \colon S^{\infty} \to S^{\infty}$  denote the antipodal map. If we choose the characteristic maps of  $e_{\pm}^{n}$  in such a way that  $\Phi_{-}^{n} = \tau \circ \Phi_{+}^{n}$  and that  $e_{+}^{n-1}$  appears with coefficient 1 in the cellular boundary of  $e_{+}^{n}$ , then

$$\partial e_+^n = e_+^{n-1} + s_n e_-^{n-1} = (\mathrm{id} + s_n \tau_{\#})(e_+^{n-1})$$

for a sign  $s_n = \deg(\tau \colon S^{n-1} \to S^{n-1}) \in \{\pm 1\}.$ 

(a) Use 
$$\partial e^1_+ = e^0_+ - e^0_-$$
;  $\partial \circ \partial = 0$ ; and  $\tau_{\#} \circ \partial = \partial \circ \tau_{\#}$  to determine  $s_n$  for all  $n > 0$ .

- (b) Use part (a) to compute the cellular homology of  $S^{\infty}$ .
- (c) Use part (a) to compute the cellular chain complex of  $\mathbb{R}P^{\infty} = S^{\infty}/\{x \sim \tau(x)\}$ .

**Problem 2.** (Hatcher, Section 3.1, Exercise 5) Regarding a cochain  $\varphi \in C^1(X)$  as a function from paths in X to Z, show that if  $\varphi$  is a cocycle, then

- (a)  $\varphi(\gamma \cdot \eta) = \varphi(\gamma) + \varphi(\eta)$ ,
- (b)  $\varphi$  takes the value 0 on constant paths,
- (c)  $\varphi(\gamma) = \varphi(\eta)$  if  $\gamma$  is homotopic to  $\eta$  with fixed endpoints,
- (d)  $\varphi$  is a coboundary iff  $\varphi(\gamma)$  depends only on the endpoints of  $\gamma$ , for all  $\gamma$ .

**Problem 3.** Let X be the following  $\Delta$ -complex:



- (a) Compute the simplicial homology of X.
- (b) Compute the simplicial cohomology of X in two ways: first directly and then by using part (a) and the universal coefficient theorem for cohomology.

This homework is due on Tuesday, October 1, 2019.